Прогнозирование показателей надежности. Прогнозирование надежности нефтепромыслового оборудования при проектировании. Структурная схема надежности телевизора

Прогнозирование показателей надежности. Прогнозирование надежности нефтепромыслового оборудования при проектировании. Структурная схема надежности
телевизора
Прогнозирование показателей надежности. Прогнозирование надежности нефтепромыслового оборудования при проектировании. Структурная схема надежности телевизора

Надежность изделия закладывается в период конструкторской проработки его элементов с учетом анализа вероятных отказов и причин их возникновения (метод FMEA), а также в процессе отработки опытных образцов до начала серийного изготовления изделий. Отработка опытных образцов новых изделий направлена на выявление конструкторских дефектов. При этом изготовление опытных образцов производится, как правило, не по серийной технологии, а чаще всего методами индивидуальной подгонки узлов и деталей на основе маршрутных технологий.

В процессе серийного производства изделий происходит отработка качества технологических процессов. В лучшем случае, при идеальном контроле изготовленной продукции, товарные изделия не имеют технологических дефектов, и их надежность целиком определяется качеством конструкторской документации. В то же время практика показывает, что качество технологических процессов влияет на надежность изделий в виде явных (не обнаруженных контролем) и скрытых (связанных со сложностью отбраковки) дефектов или отклонений от конструкторской документации.

Уровень качества процесса изготовления г-й детали К л „ можно определить по относительному количеству дефектных деталей и деф на партию Лф фактически изготовленной по этому техпроцессу продукции

Тот же уровень качества К л „ можно определить и по экономическим показателям процесса. Допустим, что за определенный промежуток времени (например, за смену) на данном участке необходимо изготовить Л^ тов товарных деталей для комплектования какой-то сборочной единицы. Расчетная (плановая) стоимость изготовления товарных деталей Qp ac определится по формуле

где С 1Ж - расчетная (плановая) себестоимость изготовления одной детали.

Если при контроле партии изготовленных ЛГ ф деталей окажется и деф дефектных деталей, то для комплектования партии из N T0B товарных деталей придется изготовить еще такое же количество товарных деталей, которое было забраковано при контроле. Очевидно, что фактическая стоимость партии товарных деталей будет больше

расчетной стоимости партии на стоимость изготовления дефектных деталей. Тогда уровень качества процесса изготовления можно определить по формуле

где С ф - фактическая себестоимость изготовления одной детали.

Вполне возможно, что время изготовления детали увеличено за счет несоблюдения технологической дисциплины, что также приводит к удорожанию изготовленной продукции. Нас для решения поставленной задачи интересуют затраты, связанные с качеством исполнения технологического процесса, а не нарушения технологической дисциплины.

Одной из важнейших задач выпуска конкурентоспособной продукции является снижение себестоимости ее изготовления. Поэтому важно оценить, на каком этапе изготовления изделия (узла, агрегата) затраты на обеспечение его качества превышают запланированные нормативы.

Формула (2.14), как и формула (2.15), может быть использована не только для оценки качества процесса изготовления деталей, но также при выполнении любой другой технологической операции, в том числе сборочной. В последнем случае для оценки уровня качества сборочной операции K dt можно использовать следующее соотношение:

где С с6ф - соответственно расчетная (плановая) и фактическая себестоимости сборочной операции.

Оценим качество изготовления сборочной единицы на уровне комплекта. Если известны нормативные показатели по операциям сборки, то, воспользовавшись формулой (2.16), получим для уровня качества сборки комплекта К кш следующее соотношение:

где С кшрж, С кш ф - соответственно расчетная (плановая) и фактическая себестоимости сборки комплекта.

Формула (2.17) имеет отношение только к качеству процесса сборки комплекта из деталей, но не является оценкой уровня качества изготовления комплекта в целом. Для этого необходимо учесть уровень качества изготовления всех входящих в комплект деталей. Если в комплект входят только две детали с разным уровнем качества изготовления деталей К л „, то качество изготовления комплекта составит

где К жтср - средний уровень качества изготовления деталей.

Если комплекты состоят из разного количества разных видов деталей, то необходимо определить приведенный уровень качества изготовления деталей К детпр, входящих в комплект. При этом

На примере несложного комплекта выведем формулу для расчета приведенного уровня качества изготовления деталей, входящих в комплект. Пусть комплект состоит из двух видов деталей, при этом имеем первого вида т, К 1дегср, а второго вида т 2 деталей со средним уровнем качества процесса К 2жгср. Тогда

Решаем уравнение (2.21) относительно К л „ щг

Из формулы (2.21) видно, что если уровни качества процесса изготовления всех деталей одинаковы, то приведенный уровень качества изготовления деталей равен уровню качества процесса изготовления любой детали, входящей в комплект.

Аналогично рассчитываются уровни качества процесса изготовления других сборочных единиц, в том числе узлов (агрегатов). Уровень качества изготовления изделия К па, состоящего из узлов, составит

где К у:а „ (> - приведенный уровень качества изготовления узлов;

Кшд.сб - уровень качества процесса сборки изделия.

На практике при сборке изделия достаточно часто встречаются почти все элементы изделия более низкого уровня (узел, подузел, комплект, базовая деталь). Покажем, как в этом случае определяется приведенный уровень качества изготовления узла К г „„ г. Допустим, что изделие состоит из двух разных узлов (в количестве соответственно d { и d 2) и одной базовой детали. Составляем уравнение по аналогии с уравнением (2.20)

Решая уравнение, получим

Из уравнения (2.24) видно, что качество процесса изготовления деталей влияет на качество процесса изготовления изделия тем больше, чем на более высоком уровне сборки применяется эта деталь. Это означает, что на качество изготовления и контроля базовых деталей необходимо обращать особое внимание.

Если на каждом этапе (деталь, комплект, подузел, узел) производства качество изготовления элементов изделия одинаковое, то уравнение (2.22) можно переписать в следующем виде:

Если отдельные элементы изделия поставляются по кооперации, то уровень качества процесса их изготовления при расчете качества изготовления изделия следует принимать за единицу, так как истинное значение уровня их качества неизвестно. При налаженных с поставщиками комплектующих деловых связях можно провести совместную работу по оценке качества изготовления этих комплектующих.

Прогнозирование надежности изделий в процессе эксплуатации возможно при определении коэффициентов связи а между уровнем качества изготовления г-го узла К у и вероятностью безотказной работы этого же узла P(t ) в процессе эксплуатации по результатам рекламаций на товарные изделия. В этом случае прогнозируемая вероятность безотказной работы нового изделия Р кзл по результатам оценки уровня качества изготовления узлов (агрегатов) изделия имеет вид

где п - количество основных узлов (агрегатов) изделия, влияющих на его безотказную работу.

Очевидно, что при анализе значений коэффициентов связи а можно выявить наиболее слабые (опасные) места (узлы) или скрытые дефекты изделия, на которые в первую очередь необходимо обратить внимание при разработке заводской программы повышения качества продукции.

Случайное событие, приводящее к полной или частичной утрате работоспособности изделия, называется отказом.

Отказы по характеру изменения параметров аппаратуры до момента их возникновения подразделяют на постепенные и внезапные (катастрофические). Постепенные отказы характеризуются достаточно плавным временным изменением одного или нескольких параметров, внезапные – их скачкообразным изменением. По повторяемости возникновения отказы бывают одноразовые (сбои) и перемежающиеся.

Сбой – однократно возникающий самоустраняющийся отказ, перемежающийся отказ – многократно возникающий сбой одного и того же характера.

В зависимости от причины возникновения отказы делятся на устойчивые и самоустраняющиеся. Устойчивый отказ устраняется заменой отказавшего компонента, а самоустраняющийся исчезает сам, но может повториться. Самоустраняющийся отказ может проявиться в виде сбоя или в форме перемежающегося отказа.

Возникновение отказов происходит как из-за внутренних свойств аппаратуры, так и из-за внешних воздействий и носит случайный характер. Для количественной оценки отказов используют вероятностные методы теории случайных процессов.

Безотказность – свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени. Способность изделия непрерывно сохранять заданные функции в течение установленного в технической документации времени характеризуется вероятностью безотказной работы, интенсивностью отказов и средней наработкой между отказами. Безотказность изделия (например, ячейки) в свою очередь определяется значениями интенсивности отказов компонентов λi, входящих в его состав.

Теория оценки надежности методологически позволяет увидеть и "оправдать" существовавшие ранее конкретные модели оценки надежности, в частности компонентов, а также предвидеть степень их полноты, достаточности и адекватности для решения практических задач надежности.

Исследователи отказов компонентов использовали принцип каузальности (причинности) и для объяснения процессов деградации, приводящих к отказам, применяли знания из физики, химии, термодинамики и материаловедения. В результате появились синтетические термины и понятия – "механизм отказа", "энергия активации процесса деградации", составляющие основу физических методов анализа (физика надежности, физика старения, физика отказов), положенных в основу разработок моделей оценки показателей надежности с целью прогнозирования надежности компонентов. Такие модели широко используются в практической работе при анализе и оценке надежности изделий, в том числе компонентов МЭА, и приведены в официальных стандартах и каталогах микросхем, являющихся главным видом изделий элементной базы современных технических объектов. Поэтому знание этих моделей полезно для правильного инженерного применения.

Для того чтобы дать представление о природе процессов деградации в изделиях, вначале покажем, каким образом можно применить концепции химического равновесия, статистической механики и теории абсолютных скоростей реакций к системе, состоящей из многих частиц. Это позволит далее ввести как эмпирическую модель оценки скоростей реакции Аррениуса, так и более общую модель Эйринга.

Под механизмами отказов понимаются микроскопические процессы изменений, ведущие к отказу изделия. Механизм отказа представляет теоретическую модель, призванную объяснить на атомном и молекулярном уровнях внешние проявления отказа изделия. Эти внешние проявления обусловливаются видом отказов и представляют собой конкретные, физически измеримые состояния изделия.

Модель механизма отказов обычно является в большой мере идеализированной. Однако она позволяет предсказать взаимозависимости, что приводит к лучшему пониманию рассматриваемого явления, хотя количественные результаты зависят от конкретных компонентов, состава и конфигурации изделия.

Механизмы отказов могут иметь физическую и (или) химическую природу. На практике разделить механизмы отказов затруднительно. Поэтому зачастую в процессе анализа сложный ряд механизмов рассматривают как единый обобщенный механизм отказов. Как правило, особый интерес представляет какой-то один механизм из ряда действующих одновременно, который определяет скорость протекания процесса деградации и сам развивается наиболее быстро.

Механизмы отказов могут быть представлены либо непрерывными функциями времени, которые обычно характеризуют процессы старения и износа, либо скачкообразными функциями, отражающими наличие множества невыявленных дефектов или качественно слабых мест.

Первая группа механизмов обусловлена тонкими дефектами, приводящими к дрейфу параметров компонентов за пределы допусков, и характерна для большинства компонентов; вторая группа механизмов проявляется в небольшом числе компонентов и обусловлена грубыми дефектами, от которых избавляются посредством технологических отбраковочных испытаний (ТОИ).

Даже самый простой компонент изделия (в том числе ИМНЭ) является многокомпонентной гетерогенной системой, многофазной, имеющей граничные области между фазами. Для описания такой системы используют либо феноменологический, либо молекулярно-кинетический подход.

Феноменологический подход – чисто эмпирический, описывающий состояние системы на основании измеримых макроскопических параметров. Например, для транзистора по результатам измерений дрейфа во времени тока утечки и напряжения пробоя в определенные моменты времени устанавливается взаимосвязь этих параметров, на базе которой осуществляется прогнозирование свойств и состояний транзистора как системы. Однако эти параметры являются усредненными по множеству микроскопических характеристик, что снижает их чувствительность как индикаторов механизмов деградации.

Молекулярно-кинетический подход преимущественно связывает макроскопические свойства системы с описанием ее молекулярной структуры. В системе из многих частиц (атомов и молекул) их перемещения можно описать на основе законов классической и квантовой механики. Однако вследствие необходимости учета большого числа взаимодействующих частиц задача весьма объемна и трудна для решения. Поэтому молекулярно-кинетический подход также остается чисто эмпирическим.

Интерес к кинетике деградации компонентов ведет к анализу того, как протекают превращения (переходы) одного равновесного состояния в другое с учетом природы и скорости превращений. При таком анализе возникают некоторые трудности.

Работа компонентов зависит главным образом от таких необратимых явлений, как электро- и теплопроводность, т.е. определяется неравновесными процессами, для исследования зависимости которых приходится прибегать к методам аппроксимации, поскольку компоненты являются многокомпонентными системами, состоящими из ряда фаз вещества. Наличие множества неравновесных факторов может при определенных условиях влиять на природу и скорость изменения равновесных состояний системы. Следовательно, необходимо учитывать не только комбинации механизмов, способных меняться в зависимости от времени и нагрузки, но и изменения во времени самих механизмов.

Несмотря на эти сложности, можно сформулировать общую концепцию рассмотрения и анализа, исходя из того, что в технологии компонентов на основании контроля их параметров и результатов некоторого периода испытаний принято решать, какие из данного множества компонентов являются годными для конкретного применения. Процесс отбраковки осуществляется на протяжении всего производственного цикла: от материалов до испытаний готовых изделий.

Таким образом, остается только понять механизм эволюции готового компонента от состояния "годен" до состояния "брак". Опыт свидетельствует, что такое превращение требует преодоления определенного энергетического барьера, схематически показанного на рис. 5.13 .

Рис. 5.13.

р 1, р, р 2 уровни энергии, характеризующие нормальное, активированное и отказовое состояния системы; Е a – энергия активации; δ – пространство неустойчивости системы; А, В, С – взаимодействующие частицы системы

Минимальный уровень энергии, необходимый для перехода из состояния p 1 в состояние р, называется энергией активации Е а процесса, которая может иметь механическую, тепловую, химическую, электрическую, магнитную или другую природу. В полупроводниковых твердотельных изделиях – это зачастую тепловая энергия.

Если состояние р 1 является минимально возможным уровнем энергии данной системы, а компонент соответствует состоянию "годен", то состояние р соответствует неустойчивому равновесию системы, а компонент – предотказовому состоянию; р 2 отвечает состоянию "отказ" компонента.

Рассмотрим случай, когда имеется один механизм отказа. Состояние системы (хорошее или плохое) можно охарактеризовать рядом измеримых макроскопических параметров. Изменение, или дрейф этих параметров можно регистрировать как функцию времени и нагрузки. Однако необходимо убедиться в том, что принятая группа макропараметров не отражает частный случай микросостояния системы (плохой или хороший). Признаком частного случая является отсутствие двух идентичных изделий с точки зрения их микросостояния. Тогда скорость деградации будет для них неодинакова, а сами механизмы могут оказаться различными в какой-то заданный промежуток времени, а значит, и технологические отбраковочные испытания (ТОИ) будут неэффективными. При идентичности микросостояний компонентов статистика отказов после их испытаний будет идентичной.

Рассмотрим анализ процессов деградации. В простой системе, состоящей из многих частиц, рассмотрим некоторое ограниченное число частиц, активно участвующих в процессе деградации, ведущем к деградации параметров компонента. Во многих случаях степень деградации пропорциональна числу активированных частиц.

Например, может происходить диссоциация молекул на составляющие их атомы или ионы. Скорость этого процесса (химической диссоциации) будет зависеть от числа диссоциирующих частиц и от их средней скорости прохождения через энергетический барьер.

Допустим, что имеем измеримый параметр П. Свойства изделия или некая функция параметра f (П) изменяется пропорционально скорости химической диссоциации каких-то веществ, входящих в состав материалов изделия, а сама диссоциация является главным механизмом деградации, приводящим к отказу изделия. В этом случае скорость изменения П или f (П) во времени t можно выразить следующим образом:

где N a число частиц, достигших уровня энергии, достаточного для преодоления энергетического барьера;– средняя скорость движения активированных частиц через барьер;– коэффициент прозрачности барьера (он меньше единицы, так как часть активных частиц скатывается обратно с энергетической вершины барьера).

Задача определения N a из общего числа частиц в системе может быть решена при следующих допущениях:

  • 1) только небольшая часть всех частиц системы всегда обладает энергией, необходимой для активации процесса деградации;
  • 2) существует равновесие между числом активированных частиц и числом остальных частиц системы, т.е. скорость возникновения (рождения) активированных частиц равна скорости их исчезновения (гибели):

Задачи рассматриваемого типа являются предметом исследования статистической механики и связаны со статистиками Максвелла – Больцмана, Ферми – Дирака, Бозэ – Эйнштейна.

Если применить классическую статистику Максвелла Больцмана, используемую как удовлетворительную аппроксимацию для частиц всех типов (все частицы различимы), то число частиц, которое будет находиться на одном и том же энергетическом уровне в равновесной системе из многих частиц, опишется следующим образом:

где Е a энергия активации; k – постоянная Больцмана; Т – абсолютная температура.

В процессе многолетних исследований кинетики реакций эмпирическим путем было установлено, что в большинстве химических реакций и некоторых физических процессах имеет место аналогичная зависимость их скорости реакции от температуры и убыли

(убывания) исходной концентрации вещества С, т.е.

Другими словами, для термически активируемых химических реакций справедливо уравнение Аррениуса. Запишем его с учетом квантовомеханических поправок:

где А – коэффициент пропорциональности.

Большинство ускоренных испытаний компонентов основано на использовании уравнения Аррениуса, которое широко применяется, хотя зачастую и не обеспечивая вполне необходимую точность, для анализа процессов деградации изделий и прогнозирования их надежности.

Применительно к изделиям электроники самым ранним было его использование в исследовании нарушений (неисправностей) электрической изоляции.

Множитель А должен быть рассчитан с учетом:

  • средней скорости преодоления частицами энергетического барьера;
  • общего числа имеющихся (участвующих в процессе) частиц;
  • функции распределения частиц по энергиям в системе.

где f * и f n – функции распределения активированных и нормальных частиц; δ – длина пути реакции; С n – концентрация нормальных частиц.

С учетом поступательной, вращательной и вибрационной энергий частиц последнее выражение записывается в виде, пригодном для использования в физике отказов:

где ; k – постоянная Больцмана; h – постоянная

Планка; Т – температура; – соответственно энергия активации, стандартная энергия активации Гиббса, энтропия и энтальпия активации, универсальная газовая постоянная.

Важность уменьшения энтропии в системе, состоящей из многих частиц, заключается в замедлении скорости деградации параметра изделия в связи с возрастанием упорядоченности системы. Это означает увеличение времени наработки на отказ, что можно показать, проинтегрировав последние уравнения:

Выражение для времени достижения компонентом отказового состояния t f от номинально-допустимого значения электрического параметра П0 до отказового Пf после интегрирования, подстановки пределов и логарифмирования примет вид

где ; коэффициент А" определяется в процессе испытаний на надежность и отражает предотказовое (т.е. энергетически активированное) состояние компонента.

Если под временем t f понимать среднюю наработку на отказ, то для экспоненциального закона распределения интенсивность отказов λ можно определить следующим образом:

Рассмотренный подход позволяет при теоретическом анализе надежности компонентов делать только качественные и полуколичественные выводы как вследствие многофазности и гетерогенности многокомпонентной надсистемы, частью которой является компонент (и даже элемент компонента), так и из-за вида временны́х экспериментальных моделей деградации компонентов. Это очевидно из сводки причин, механизмов и физико-математических моделей отказов компонентов ИС, представленной в табл. 5.20 (временны́е модели не всегда следуют логарифмической зависимости; на практике могут быть и степенны́е зависимости).

Достоинство подхода, основанного на использовании уравнения Аррениуса, состоит в возможности прогнозирования параметрических отказов изделий на основе ускоренных испытаний. Недостатком такого подхода является отсутствие учета конструкторско-технологических параметров элементов и компонентов.

Таким образом, подход Аррениуса базируется на эмпирической связи электрического параметра компонента или элемента и механизма отказа с энергией активации Еа. Этот недостаток преодолен теорией Г. Эйринга, который ввел понятие активированного комплекса частиц и методами статистической и квантовой механики нашел его обоснование. Однако в его теории не учитываются достижения российской термодинамической школы материаловедов, творчески переработавших идеи Д. Гиббса.

Тем не менее подход Аррениуса – Эйринга Гиббса активно применяется для решения вопросов надежности при допущении температурной зависимости механизмов отказов и является основой различных моделей, служащих для нахождения интенсивностей отказов ИЭТ, приведенных в справочной литературе, руководствах и базах данных программ расчета показателей надежности.

В теории Эйринга не учитываются достижения российской термодинамической школы материаловедов, творчески освоивших и переработавших идеи Д. Гиббса, не очень почитаемого в Америке, но любимого в России и на просторах бывшего СССР. Известно, например, что В. К. Семенченко на основе обобщенных функций, связанных с уравнениями Пфаффа (1815 г. – так называемая пфаффова форма) предложил свой подход (свою С-модель) и модифицировал фундаментальное уравнения Д. Гиббса.

Таблица 5.20

Причины, характерные механизмы и модели отказов компонентов и их элементов

Параметр (показатель) надежности

Причина (механизм) отказов

Модель отказов

Значение энергии активации Е a, эВ

Физико-химическая система

Время самопроизвольного выхода из устойчивого состояния τ

Процессы деградации

Герметизирующие покрытия (полимеры)

Средняя наработка на отказ tr

Деструкция (процессы сорбции, десорбции, миграции)

Поверхность полупроводника /7-типа

Поверхностная концентрация ионов n s

Инверсия, электромиграция

Алюминий массивный (объемный)

Средняя наработка на отказ t f

Термомеханические напряжения

Металлизация (пленочная)

Средняя наработка на отказ t f

Электромиграция, окисление, коррозия, электрокоррозия

Межсоединения

Сопротивление контактов R

Образование интерметаллидов

Резисторы

Сопротивление контактов R

Окисление

Конденсаторы

Емкость С

Диффузия, окисление

Микромеханический акселерометр (ММА)

Чувствительный элемент преобразователя механической деформации в ускорение

Микроползучесть

1,5-2

* Данные взяты из кн.: Технология СБИС. В 2 кн. Кн. 2 / К. Могэб [и др.]; пер. с англ.; под ред. С. Зи. М.: Мир, 1986. С. 431.

Необходимо отметить, что к развитию своих идей Д. Гиббс провидчески подтолкнул сам. Как было сказано в предисловии к "Принципам..." , он "признает неполноценность всякой теории", которая не учитывает свойств веществ, наличие излучения и других электрические явлений.

Фундаментальное уравнение вещества по Гиббсу (с учетом термических, механических и химических свойств) имеет вид полного дифференциала:

или, что то же, для удобства визуального анализа:

здесь Гиббс использует следующие обозначения: ε – энергия; t – температура; η – энтропия; р – давление; V – объем; μ, – химический потенциал; m i – мольная доля /-го компонента (i= 1, ..., п ).

Семенченко, используя метод обобщенных функций (пфаффовы формы) ввел в G-модель напряженности электрического (Е ) и магнитного (Я) полей, а также соответствующие им "координаты" – электрическую (Р ) и магнитную (М ) поляризации, модифицировал G-модель до вида

Поэтапная процедура применения наиболее простой модели – Аррениуса – для анализа данных испытаний по определению температурной зависимости процессов деградации компонентов выглядит так:

В связи с изложенным важно сделать замечания о концепции надежности, принятой фирмой Motorola для полупроводниковых диодов, транзисторов и ИС.

Как известно, надежность – это вероятность того, что ИС сможет успешно выполнить свои функции в заданных условиях эксплуатации за определенный промежуток времени. Это классическое определение.

Другое определение надежности связано с качеством. Поскольку качество – мера изменчивости, т.е. вариабельности, вплоть до потенциального, скрытого несоответствия или отказа в репрезентативной выборке, то надежность – мера изменчивости во времени в условиях эксплуатации. Следовательно, надежность – это качество, развернутое во времени в условиях эксплуатации.

Наконец, надежность продукции (изделий, в том числе компонентов) – это функция правильного понимания требований заказчика и внедрение или воплощение этих требований в конструкцию, технологию изготовления и эксплуатацию изделий и их конструктивов.

Метод QFD (quality function deployment) представляет собой технологию развертывания функций качества, структурирование функции качества (что означает проектирование изделий, при котором сначала выявляются запросы потребителей, затем определяются технические характеристики продукции и процессов изготовления, наилучшим образом соответствующие выявленным потребностям, в результате чего достигается более высокое качество продукции). Метод QFD полезен для установления и отождествления требований к качеству и надежности с целью их реализации в инновационных проектах.

Количество наблюдаемых отказов за общее количество часов в конце периода наблюдения носит название точечной оценки интенсивности отказов. Эта оценка получается из наблюдений за выборкой, например, испытуемых ИС. Оценка интенсивности отказов выполняется с использованием χ2-распределения:

где λ* – интенсивность отказа; а – доверительный уровень значимости; v = 2r 2 – число степеней свободы; r – число отказов; п – число изделий; t – продолжительность испытаний.

Пример 5.6

Вычислить значения функции χ2 для 90%-ной доверительной вероятности.

Решение

Результаты вычислений приведены в табл. 5.21.

Таблица 5.21

Вычисленные значения функции χ 2 для 90%-ной доверительной вероятности

Для повышения достоверности доверительного уровня оценки требуемой сегодня наработки фирмой Motorola используется подход, основанный на определении интенсивности отказов компонентов в форме уравнения Эйринга:

где А, В, С – коэффициенты, определяемые по результатам испытаний; Т – температура; RH – относительная влажность; Е – напряженность электрического поля.

Таким образом, изложенный материал свидетельствует о том, что в условиях достаточно широкого применения изделий зарубежной электронной техники с неизвестными показателями надежности можно рекомендовать использование представленных в настоящей главе методов и моделей для определения и прогнозирования показателей надежности компонентов и систем: для компонентов – с применением физических представлений на основе уравнений Аррениуса, Эйринга, Семенченко, Гиббса; для систем – с применением комбинаторного анализа (параллельного, последовательного и иерархического типов).

  • Используемый на рисунке термин "Долина" – термин в физической химии (официально не определенный), применяющийся в диаграммах состояний частиц для частиц, понизивших свою энергию, "упавших" с вершины в долину (по аналогии с альпинизмом), преодолевших энергетический барьер и потерявших энергию после осуществления работы, т.е. осуществивших переход на более низкий энергетический уровень, характеризуемый меньшей энергией Гиббса, что является следствием реализации принципа минимума энергии, описанного в термодинамических потенциалах и введенного в науку (например, в теоретическую физику) самим Д. Гиббсом.
  • Гиббс Дж. В. Основные принципы статистической механики, разработанные со специальным применением к рациональному обоснованию термодинамики // Гиббс Дж. В. Термодинамика. Статистическая механика: пер. с англ.; под ред. Б. М. Зубарева; сост. У. И. Фракфурт, А. И. Фрэнк (серия "Классики науки"). М.: Наука, 1982. С. 352-353.

Материалы практических занятий № 6 и 7.

Прогнозирование надежности.

Прогнозирование надежности. Прогнозирование надежности с учетом предварительной информации. Использование косвенных признаков прогнозирования отказов. Индивидуальное прогнозирование надежности. Индивидуальное прогнозирование надежности по методу распознавания образов (Порядок проведения испытаний. Порядок обучения распознающей функции. Порядок проведения прогнозирования качества изделия. Пример метода индивидуального прогнозирования качества изделия.).

ПЗ.6-7.1. Прогнозирование надежности.

В соответствии с действующими ГОСТами в технические задания на проектируемые изделия (объекты) записываются требования экспериментального подтверждения заданного уровня надежности с учетом действующих нагрузок.

Для высоконадежных объектов (например, космической техники) это требование является чрезмерно жестким (в смысле необходимости испытания большого числа однотипных объектов) и не всегда практически осуществимым. В самом деле, для того, чтобы подтвердить вероятность безотказной работы Р = 0,999 с 95%-й доверительной вероятностью следует осуществить 2996 успешных испытаний. Если же хотя бы одно испытание будет неудачным, то число потребных испытаний еще более возрастет. К этому следует добавить и очень большую продолжительность испытаний, так как многие объекты должны сочетать высокий уровень надежности с большой наработкой (ресурсом). Отсюда вытекает важное требование : при оценке надежности необходимо учитывать всю накопленную предварительную информацию о надежности технических объектов.

Прогнозирование надежности и отказов – это предсказание ожидаемых показателей надежности и вероятности возникновения отказов в будущем на основании информации полученной в прошлом, либо на основании косвенных прогнозирующих признаков.

Расчет надежности на этапе проектирования изделий носит черты такого прогнозирования, поскольку делается попытка предвидеть будущее состояние изделия, которое еще находится на стадии разработки.

Некоторые испытания, рассмотренные выше, содержат элементы прогнозирования надежности партии изделий по надежности их выборки, например, по графику испытаний . Эти способы прогнозирования основаны на изучении статистических закономерностей отказов.

Но возможно прогнозирование надежности и отказов на основе изучения факторов обуславливающих возникновение отказов. В этом случае, наряду со статистическими закономерностями рассматриваются также и физико-химические факторы, влияющие на надежность, что усложняет ее анализ, но позволяет сократить его продолжительность и делает его более информативным.

ПЗ.6-7.2. Прогнозирование надежности с учетом предварительной информации.

При оценке надежности необходимо учитывать всю накопленную предварительную информацию о надежности технических объектов. Например , важно расчетную информацию, полученную на стадии эскизного проектирования, в дальнейшем сочетать с результатами испытаний объекта. Кроме того, сами испытания тоже весьма разнообразны и проводятся на разных этапах создания объекта и на различных уровнях его сборки (элементы, блоки, узлы, подсистемы, системы). Учет информации, характеризующей изменение надежности в процессе совершенствования объекта, позволяет значительно уменьшить количество испытаний необходимых для экспериментального подтверждения достигнутого уровня надежности.

В процессе создания технических объектов проводятся испытания. На основании анализа результатов этих испытаний в конструкцию вносятся изменения, направленные на совершенствование их характеристик. Поэтому важно оценить, насколько эффективными оказались эти мероприятия и действительно ли после внесения изменений показатели надежности объекта улучшились. Такой анализ можно выполнить, используя методы математической статистики и математические модели изменения надежности.

Если вероятность некоторого события в единичном опыте равна р и при n независимых опытах это событие (отказ) произошло m раз, то доверительные границы для p находят следующим образом:

Случай 1. Пусть m ¹ 0 , тогда:

(ПЗ.6-7.2.)

где коэффициенты R 1 и R 2 берутся из соответствующих статистических таблиц.

Случай 2 . Пусть m=0 , тогда р н =0, а верхняя граница равна

. (ПЗ.6-7.3.)

Расчет R 0 производится по уравнению

(ПЗ.6-7.4.)

Односторонние доверительные вероятности g 1 и g 2 связаны с двухсторонней доверительной вероятностью γ * известной зависимостью

(ПЗ.6-7.5.)

Стендовые, наземные испытания дают основную информацию о надежности объекта. На основании результатов таких испытаний определяют показатели надежности . Если техническое изделие представляет собою сложную систему, причем надежность некоторых элементов определена экспериментально, а некоторых расчетные путем, то для прогнозирования надежности сложной системы применяют метод эквивалентных частностей .

При летных испытаниях получают дополнительную информацию о надежности объекта и эта информация должна использоваться для уточнения и корректировки полученных при стендовых испытаниях показателей надежности. Пусть необходимо уточнить нижнюю границу вероятности безотказной работы объекта, который прошел стендовые наземные испытания и летные испытания и при этом m=0.

Определение показателей надежности на стадии проектирования является наиболее важной задачей в теории надежности, способствующей наибольшей эффективности использования объекта. Прогноз надежности на стадии проектирования обходится значительно дешевле (~ 1000 раз), чем на стадии изготовления и эксплуатации, потому что не привлекаются зна­чительный станочный парк и дорогая рабочая сила.

Существуют три группы методов прогноза надежности.

1-я группа - теоретические расчетно-аналитические мето­ды, или методы математического моделирования. Матема­тическое моделирование - это процесс создания мате­матической модели, т. е. это описание математическими знаками и символами изучаемого сложного процесса. Неопре­деленные явления можно описать по-разному, т. е. составить несколько математических моделей.

Вероятностно-аналитические методы - это прило­жение теоретических положений теории вероятности к инже­нерным задачам. Эти методы имеют для реальной практики значительный недостаток: некоторые из них могут быть ис­пользованы, только если имеются аналитические выражения для распределений случайных величин. Вывести и получить аналитические выражения для распределений случайных ве­личин обычно очень сложно, поэтому на стадии проектирова­ния, когда дается прикидочная оценка показателей надежнос­ти, эти методы годятся не всегда. Хотя вычисление вероятнос­ти нахождения случайной величины в заданных пределах ее значений, обеспечивающих нормальное безотказное функцио­нирование используемого объекта, в математическом отноше­нии весьма простая операция, если имеется закон распределе­ния этой случайной величины.

Тогда имеем:

где R - надежность, т. е. вероятность нахождения случайной величины X в допустимых пределах Х min доп, Х max доп - мини­мально допустимом и максимально допустимом.

Значит, задача подсчета надежности сводится к нахожде­нию теоретической непрерывной и дискретной плотности ве­роятности состояния одной X или нескольких , Х 1 , Х2, ..., Х п случайных величин. Знание распределения φ(Х) - необходи­мое условие для расчетчика. Перечислим наиболее распрост­раненные теоретические расчетно-аналитические методы:

1. На основе известных законов распределений для показателей надежности системы в целом.

2. На основе известных законов распределений для показателей надежности отдельных элементов системы.

3. Упрощенный метод на основе принятия нормальных за­конов распределения для показателей надежности отдельных элементов системы.

4. Метод статистического моделирования, или метод Мон­те-Карло, на основе любых законов распределения параметров системы.


5. Комбинаторно-матричный метод с любыми распределениями вероятности параметров системы.

Перечисленные методы представляют основную часть из большого количества расчетно-аналитических методов.

2-я группа - экспериментальные и экспериментально-ана­литические методы - физическое моделирование.

1. На основе сбора и обработки ретроспективной и текущей информации о надежности объекта.

2. На основе специальных испытаний на надежность в нор­мальных условиях эксплуатации и ускоренных или форсиро­ванных испытаний.

3. На основе испытаний моделей объекта в нормальных условиях эксплуатации и ускоренных испытаний.

3-я группа - эвристические методы, или методы эвристи­ческого моделирования.

Эвристика - наука, занимающаяся изучением природы мыслительных операций человека в ходе решения различных задач.

Здесь отметим следующие методы:

1. Метод экспертных или балльных оценок. Выбирается комиссия, состоящая из опытных высокопрофессиональных в данном вопросе экспертов, которые путем выставления баллов оценивают рассматриваемый показатель надежности. Затем
проводится математическая обработка результатов оценки (коэффициент конкордации и др.). Это хорошо известный ме­тод при оценке спортивных соревнований (гимнастика, фигурное катание, бокс и др.).

2. Мажоритарный метод, или метод голосования, основанный на использовании мажоритарной функции. Мажоритарная функция принимает два значения «да» или «нет» - «1» или «О», причем значение «1» принимает тогда, когда число переменных, входящих в нее и принимающих значение «1», больше числа переменных, принимающих значение «О». В противоположном случае функция принимает значение «О».

Все перечисленные методы являются недетерминирован­ными, или основанными на статистике, или субъективными, т. е. ответ является неопределенным. Но несмотря на это, эти методы позволяют сравнивать по надежности различные ва­рианты системы, выбрать оптимальную систему, найти сла­бые места и выработать рекомендации по оптимизации надеж­ности и эффективности функционирования объекта.

Если невозможно испытать систему, можно прогнозиро­вать надежность, комбинируя испытания отдельных элемен­тов системы с аналитическими методами. Прогноз на надеж­ность позволяет провести расчеты по обеспечению запасными частями, организовать техническое обслуживание и ремонт, а значит, обеспечить рациональную эксплуатацию объекта.

Чем сложнее система, тем больший эффект дают расчетные методы на всех этапах разработки и эксплуатации.

Открытие новых технических решений влечет за собой ана­лиз их уровня и конкурентоспособности тех объектов техни­ки, в которых эти решения использованы. С этой целью про­водятся патентные исследования, основной задачей которых является оценка патентной чистоты и патентоспособности ис­пользованных технических решений.

В соответствии с ГОСТом Р 15.011-96 патентные исследова­ния относятся к прикладным научно-исследовательским рабо­там и являются неотъемлемой составной частью обоснования принимаемых решений хозяйствующими субъектами, связан­ными с созданием, производством, реализацией, совершенст­вованием, ремонтом и снятием с производства объектов хо­зяйственной деятельности. При этом к участникам хозяйст­венной деятельности относят предприятия, организации, концерны, акционерные общества и другие объединения неза­висимо от форм собственности и подчинения, государственно­го заказчика, а также лиц, занимающихся индивидуальной трудовой деятельностью.

Патентные исследования проводятся на всех стадиях жиз­ненного цикла объектов техники: при разработке научно-тех­нических прогнозов и планов развития науки и техники, при создании объектов, техники, аттестации промышленной про­дукции, определении целесообразности ее экспорта, продажи и приобретения лицензий, при защите государственных инте­ресов в области охраны промышленной собственности.

Этим документом установлен порядок работ по патентным исследованиям: разработка задания на проведение патент­ных исследований; разработка регламента поиска информа­ции; поиск и отбор патентной, другой научно-технической, втом числе конъюнктурно-экономической информации; обоб­щение результатов и составление отчета о патентных иссле­дованиях.

В качестве задания на проведение патентных исследова­ний предоставляется технический документ, оформленный в установленном порядке, или другие документы: рабочая про­грамма, график проведения патентных исследований и т. д.; последние должны содержать все сведения, предусмотрен­ные ГОСТом, и быть оформлены надлежащим образом. Все виды работ по патентным исследованиям проводятся под на­учно-методическим руководством патентного подразделения. Для проведения поиска по фондам патентной и другой науч­но-технической, в том числе конъюнктурно-экономической, информации составляется регламент поиска (программа). Для определения области поиска требуется сформулировать предмет поиска, выбрать источники информации, опреде­лить ретроспективу поиска, страны, по которым следует про­водить поиск, и классификационные рубрики (МКИ, НКИ, УДК).

· исследование технического уровня объектов хозяйственной деятельности, выявление тенденций, обоснование прогноза их развития;

  • исследование состояния рынков данной продукции, сло­жившейся патентной ситуации, характера национального производства в странах исследования;

· исследование требований потребителей к продукции и услугам;

· исследование направлений научно-исследовательской и производственной деятельности организаций и фирм, которые действуют или могут действовать на рынке исследуемой продукции;

· анализ коммерческой деятельности, включая лицензионную деятельность разработчиков (организаций и фирм), производителей (поставщиков) продукции и фирм, предо­ставляющих услуги, и патентной политики для выявления конкурентов, потенциальных контрагентов, лицензиаров и лицензиатов, партнеров по сотрудничеству;

· выявление торговых марок (товарных знаков), используе­мых фирмой-конкурентом;

  • анализ деятельности хозяйствующего субъекта; выбор оп­тимальных направлений развития его научно-технической, производственной и коммерческой деятельности, патент­ной и технической политики и обоснование мероприятий по их реализации;
  • обоснование конкретных требований по совершенствова­нию существующей и созданию новой продукции и техно­логии, а также организации выполнения услуг; обосно­вание конкретных требований по обеспечению эффектив­ности применения и конкурентоспособности продукции и услуг; обоснование проведения необходимых для этого ра­бот и требований к их результатам;
  • технико-экономический анализ и обоснование выбора тех­нических, художественно-конструкторских решений (из числа известных объектов промышленной собственности), отвечающих требованиям создания новых и совершенство­вания существующих объектов техники и услуг;
  • обоснование предложений о целесообразности разработки новых объектов промышленной собственности для исполь­зования на объектах техники, обеспечивающей достиже­ние технических показателей, предусмотренных в техниче­ском задании;
  • выявление технических, художественно-конструкторских, программных и других решений, созданных в процессе вы­полнения НИР и ОКР с целью отнесения их к охраноспо­собным объектам интеллектуальной собственности, в том числе промышленной;
  • обоснование целесообразности правовой охраны объектов интеллектуальной собственности (в том числе промышлен­ной) в стране и за рубежом, выбор стран патентования; ре­гистрации;
  • исследование патентной чистоты объектов техники (экс­пертизы объектов техники на патентную чистоту, обосно­вание мер по обеспечению их патентной чистоты и беспре­пятственному производству и реализации объектов техники в стране и за рубежом);

· анализ конкурентоспособности объектов хозяйственной дея­тельности, эффективности их использования по назначению, соответствия тенденциям и прогнозам развития; выявление и отбор объектов лицензий и услуг, например инжиниринг;

· исследование условий реализации объектов хозяйственной деятельности, обоснование мер их оптимизации;

· обоснование целесообразности и форм проведения в стране и за рубежом коммерческих мероприятий по реализации объектов хозяйственной деятельности, по закупке и продаже лицензий, оборудования, сырья, комплектующих изделий и т. д.

· проведение других работ, отвечающих интересам хозяйст­вующих субъектов.

В соответствии с поставленными задачами в итоговый отчет по патентным исследованиям включаются следующие матери­алы: по анализу и обобщению информации в соответствии с по­ставленными перед патентными исследованиями задачами; обоснованию оптимальных путей достижения конечного ре­зультата работы; по оценке соответствия завершенных патент­ных исследований заданию на их проведение, достоверности их результатов, степени решения поставленных перед патентны­ми исследованиями задач, обоснование необходимости прове­дения дополнительных патентных исследований.

Основная (аналитическая) часть отчета о патентных иссле­дованиях содержит информацию: о техническом уровне и тен­денциях развития объекта хозяйственной деятельности; об использовании объектов промышленной (интеллектуальной) собственности и их правовой охране; об исследовании патент­ной чистоты объекта техники.

Для оценки приближения эмпирического распределения к теоретическому используется критерий согласия Романовского, который определяется по формуле:

где - критерий Пирсона;

r - число степеней свободы.

Если выполняется условие , то это дает основание для утверждения, о возможности принятия теоретического распределения показателей надежности за закон данного распределения.

Критерий Колмогорова позволяет оценить справедливость гипотезы о законе распределения при малых объемах наблюдений случайной величины

где D - максимальная разность между фактической и теоретической накопленными частотами случайной величины.

На основе специальных таблиц определяют вероятность Р того, что если конкретный вариационный признак распределен по рассматриваемому теоретическому распределению, то из-за чисто случайных причин максимальное расхождение между фактическими и теоретическими накопленными частотами будет не меньшим, чем фактически наблюдаемое.

На основе вычисленной величины Р делают выводы:

а) если вероятность Р достаточно велика, то гипотезу о том, что фактическое распределение близко к теоретическому, можно считать подтвержденной;

б) если же вероятность Р мала, то гипотеза отвергается.

Границы критической области для критерия Колмогорова зависят от объема выборки: чем меньше число результатов наблюдений, тем выше необходимо устанавливать критическое значение вероятности.

Если число отказов при наблюдении составило 10-15, то , если больше 100, то . Однако необходимо отметить, что при больших объемах наблюдений лучше пользоваться критерием Пирсона .

Критерий Колмогорова значительно проще других критериев согласия, поэтому он находит широкое применение в исследовании надежности машин и элементов.

Вопрос 22. Основные задачи прогнозирования надежности машин.

Для определения закономерностей изменения технического состояния машины в процессе работы выполняется прогнозирование надежности машин.

Различают три этапа прогнозирования: ретроспекцию, диагностику и прогноз. На первом этапе устанавливают динамику изменения параметров машины в прошлом, на втором этапе определяют техническое состояние элементов в настоящем, на третьем этапе прогнозируют изменение параметров состояния элементов в будущем.

Основные классы задач прогнозирования надежности машин могут быть сформулированы следующим образом:

    Предсказание закономерности изменения надежности машин в связи с перспективами развития производства, внедрением новых материалов, повышением прочности деталей.

    Оценка надежности проектируемой машины до того, как она будет изготовлена. Эта задача возникает на стадии проектирования.

    Прогнозирование надежности конкретной машины (узла, агрегата) на основании результатов изменения ее параметров.

    Прогнозирование надежности некоторой совокупности машин по результатам исследования ограниченного числа опытных образцов. С задачами такого типа приходится сталкиваться на этапе производства техники.

5. Прогнозирование надежности машин в необычных условиях эксплуатации (например, при температуре и влажности окружающей среды выше допустимой).

Специфика отрасли строительного машиностроения предполагает точность решения задач прогнозирования с погрешностью не более 10-15 % и использование методов прогнозирования, позволяющих получить решение задач в кратчайшие сроки.

Методы прогнозирования надежности машин выбирают с учетом задач прогнозирования, количества и качества исходной информации, характера реального процесса изменения показателя надежности (прогнозируемого параметра).

Современные методы прогнозирования могут быть разделены на три основные группы:

Методы экспертных оценок;

Методы моделирования, включающие физические, физико-математические и информационные модели;

Статистические методы.

Методы прогнозирования, основанные на экспертных оценках, заключаются в обобщении, статистической обработке и анализе мнений специалистов относительно перспектив развития данной области.

Методы моделирования базируются на основных положениях теории подобия. На основании подобия показателей модификации А, уровень надежности которой исследован ранее, и некоторых свойств модификации Б той же машины, прогнозируются показатели надежности Б на определенный период времени.

Статистические методы прогнозирования основаны на экстраполя­ции и интерполяции прогнозируемых параметров надежности, полученных в результате предварительных исследований. В основу метода положены законо­мерности изменения параметров надежности машин во времени.

Вопрос 23. Этапы прогнозирования надежности машин.

При прогнозировании надежности машин придерживаются следующей последовательности:

    Проводят классификация деталей и сборочных единиц по принципу ответственности. К деталям и сборочным единицам, отказы которых опасны для жизни людей, устанавливают более высокие требования безотказности.

    Формулируют понятия отказа деталей и сборочных единиц проектируемой системы. При этом необходимо учитывать только те детали и сборочные единицы, отказ которых приводит к полной или частичной утрате работоспособности системы.

3. Выбирают метод прогнозирования надежности в зависимости от этапа проектирования системы, точности исходных данных и принятых допущений.

    Составляют структурную схему изделия, включающую основные функциональные детали и сборочные единицы, в том числе детали и сборочные единицы силовых и кинематических цепей, расположенные по уровням в порядке их подчиненности, и отражающую связи между ними.

    Рассматривают все детали и сборочные единицы, начиная с верхнего уровня структурной схемы и кончая нижним, с подразделением их на следующие группы:

а) детали и сборочные единицы, показатели которых следует определять расчетными методами;

б) детали и сборочные единицы с заданными показателями надежности, включая назначенные параметры потока отказов;

в) детали и сборочные единицы, показатели надежности которых следует определять опытно-статистическими методами или методами испытаний.

6. Для деталей и сборочных единиц, надежность которых определяют расчетными методами:

Определяют спектры нагрузок и другие особенности эксплуатации, для чего составляют функциональные модели изделия и его сборочных единиц, которые, например, могут быть представлены матрицей состояний;

Составляют модели физических процессов, приводящих к отказам,

Устанавливают критерии отказов и предельных состояний (разрушение от кратковременных перегрузок, наступление предельного износа и др).

Классифицируют их на группы по критериям отказов и выбирают для каждой группы соответствующие методы расчета.

7. Строят при необходимости графики зависимости показателей надежности от времени, на основании которых сравнивают надежности отдельных деталей и сборочных единиц, а также различных вариантов структурных схем системы.

8. Hа основании проведенного прогнозирования надежности делают вывод о пригодности системы для применения по назначению. Если расчетная надежность окажется ниже заданной, разрабатывают мероприятия, направленные на повышение надежности рассчитываемой системы.

Вопрос 24. Прогнозирование надежности машин