Механические свойства стройматериалов

 Механические свойства стройматериалов
Механические свойства стройматериалов

Строительные материалы и изделия классифицируют по степени готовности, происхождению, назначению и технологическому признаку.

По степени готовности различают собственно строительные материалы и строительные изделия - готовые изделия и элементы, монтируемые и закрепляемые на месте работы. К строительным материалам относятся древесина, металлы, цемент, бетон, кирпич, песок, строительные растворы для каменных кладок и различных штукатурок, лакокрасочные материалы, природные камни и т. д. Строительными изделиями являются сборные железобетонные панели и конструкции, оконные и дверные блоки, санитарно-технические изделия и кабины и др. В отличие от изделий строительные материалы перед применением подвергают обработке - смешивают с водой, уплотняют, распиливают, тешут и т. д.

По происхождению строительные материалы подразделяют на природные и искусственные. Природные материалы - это древесина, горные породы (природные камни), торф, природные битумы и асфальты и др. Эти материалы получают из природного сырья путем несложной обработки без изменения их первоначального строения и химического состава. К искусственным материалам относят кирпич, цемент, железобетон, стекло и др. Их получают из природного и искусственного сырья, побочных продуктов промышленности и сельского хозяйства с применением специальных технологий. Искусственные материалы отличаются от исходного сырья как по строению, так и по химическому составу, что обусловлено коренной переработкой его в заводских условиях.

Наибольшее распространение получили классификации материалов по назначению и технологическому признаку.

По назначению материалы подразделяют на следующие группы:

Конструкционные, которые воспринимают и передают нагрузки в строительных конструкциях;

Теплоизоляционные, основное назначение которых - свести до минимума перенос теплоты через строительную конструкцию и тем самым обеспечить необходимый тепловой режим в помещении при минимальных затратах энергии;

Акустические (звукопоглощающие и звукоизоляционные) - для снижения уровня “шумового загрязнения” помещения;

Гидроизоляционные и кровельные - для создания водонепроницаемых слоев на кровлях, подземных сооружениях и других конструкциях, которые необходимо защищать от воздействия воды или водяных паров;

Герметизирующие - для заделки стыков в сборных конструкциях;

Отделочные - для улучшения декоративных качеств строительных конструкций, а также для защиты конструкционных, теплоизоляционных и других материалов от внешних воздействий;

Специального назначения (например огнеупорные или кислотоупорные), применяемые при возведении специальных сооружений.

Ряд материалов (например цемент, известь, древесина) нельзя отнести к какой-либо одной группе, так как их используют и в чистом виде, и как сырье для получения других строительных материалов и изделий. Это так называемые материалы общего назначения. Трудность классификации строительных материалов по назначению состоит в том, что одни и те же материалы могут быть отнесены к разным группам. Например, бетон в основном применяют как конструкционный материал, но некоторые его виды имеют совсем иное назначение: особо легкие бетоны являются теплоизоляционным материалом; особо тяжелые бетоны - материалом специального назначения, который используют для защиты от радиоактивного излучения.

По технологическому признаку материалы подразделяют, учитывая вид сырья, из которого получают материал, и вид его изготовления, на следующие группы:

Природные каменные материалы и изделия - получают из горных пород путем их обработки: стеновые блоки и камни, облицовочные плиты, детали архитектурного назначения, бутовый камень для фундаментов, щебень, гравий, песок и др.

Керамические материалы и изделия - получают из глины с добавками путем формования, сушки и обжига: кирпич, керамические блоки и камни, черепица, трубы, изделия из фаянса и фарфора, плитки облицовочные и для настилки полов, керамзит (искусственный гравий для легких бетонов) и др.

Стекло и другие материалы и изделия из минеральных расплавов - оконное и облицовочное стекло, стеклоблоки, стеклопрофилит (для ограждений), плитки, трубы, изделия из ситаллов и шлакоситаллов, каменное литье.

Неорганические вяжущие вещества - минеральные материалы, преимущественно порошкообразные, образующие при смешивании с водой пластичное тело, со временем приобретающее камневидное состояние: цементы различных видов, известь, гипсовые вяжущие и др.

Бетоны - искусственные каменные материалы, получаемые из смеси вяжущего, воды, мелкого и крупного заполнителей. Бетон со стальной арматурой называют железобетоном, он хорошо сопротивляется не только сжатию, но и изгибу и растяжению.

Строительные растворы - искусственные каменные материалы, состоящие из вяжущего, воды и мелкого заполнителя, которые со временем переходят из тестообразного в камневидное состояние.

Искусственные необжиговые каменные материалы - получают на основе неорганических вяжущих и различных заполнителей: силикатный кирпич, гипсовые и гипсобетонные изделия, асбестоцементные изделия и конструкции, силикатные бетоны.

Органические вяжущие вещества и материалы на их основе - битумные и дегтевые вяжущие, кровельные и гидроизоляционные материалы: рубероид, пергамин, изол, бризол, гидроизол, толь, приклеивающие мастики, асфальтовые бетоны и растворы.

Полимерные материалы и изделия - группа материалов, получаемых на основе синтетических полимеров (термопластических и термореактивных смол): линолеумы, релин, синтетические ковровые материалы, плитки, древеснослоистые пластики, стеклопластики, пенопласты, поропласты, сотопласты и др.

Древесные материалы и изделия - получают в результате механической обработки древесины: круглый лес, пиломатериалы, заготовки для различных столярных изделий, паркет, фанера, плинтусы, поручни, дверные и оконные блоки, клееные конструкции.

Металлические материалы - наиболее широко применяемые в строительстве черные металлы (сталь и чугун), стальной прокат (двутавры, швеллеры, уголки), сплавы металлов, особенно алюминиевые.

Поэтому для более глубокого понимания свойств материалов, их рационального использования при изучении предмета “Строительные материалы и изделия” положена классификация по технологическому признаку и лишь в отдельных случаях рассматривают группы материалов по назначению.

Физические свойства

Данную группу свойств составляют, во-первых, параметры физического состояния материалов и, во-вторых, свойства, определяющие отношение материалов к различным физическим процессам. К первым относят плотность и пористость материала, степень измельчения порошков, ко вторым - гидрофизические свойства (водопоглощение, влажность, водопроницаемость, водостойкость, морозостойкость), теплофизические (теплопроводность, теплоемкость, температурное расширение) и некоторые другие.

Истинная плотность р и - масса единицы объема абсолютно плотного материала, т.е. без пор и пустот. Вычисляется она в кг/м 3 , кг/дм 3 , г/см 3 по формуле:

где m - масса материала, кг, г; V а - объем материала в плотном состоянии, м 3 , дм 3 , см 3 .

Истинная плотность каждого материала - постоянная физическая характеристика, которая не может быть изменена без изменения его химического состава или молекулярной структуры. Так, у неорганических материалов, природных и искусственных камней, состоящих в основном из оксидов кремния, алюминия и кальция, истинная плотность находится в пределах 2400–3100 кг/м 3 , у органических материалов, состоящих в основном из углерода, кислорода и водорода, она составляет 800–1400 кг/м 3 , у древесины - 1550 кг/м 3 . Истинная плотность металлов колеблется в широком диапазоне: алюминия - 2700 кг/м 3 , стали - 7850, свинца - 11300 кг/м 3 .

Средняя плотность р с - масса единицы объема материала в естественном состоянии, т.е. с порами. Она может быть сухого материала, в состоянии естественной или другой влажности, указываемой в ГОСТ. Среднюю плотность (в кг/м 3 , кг/дм 3 , г/см 3) вычисляют по формуле:

где m - масса материала, кг, г; V е - объем материала, м 3 , дм 3 , см 3 .

Среднюю плотность сыпучих материалов - щебня, гравия, песка, цемента и др. - называют насыпной плотностью. В объем входят поры непосредственно в материале и пустоты между зернами.

Средняя плотность большинства материалов обычно меньше их истинной плотности. Отдельные материалы, такие как сталь, стекло, битум, а также жидкие, имеют практически одинаковые истинную и среднюю плотности.

Относительная плотность d - отношение средней плотности материала к плотности стандартного вещества. За стандартное вещество принята вода при температуре 4 o С, имеющая плотность 1000 кг/м 3 . Относительная плотность (безразмерная величина) определяется по формуле:

Пористость П - степень заполнения объема материала порами. Вычисляется в % по формуле:

где P с, P и - средняя и истинная плотности материала.

Для строительных материалов П колеблется от 0 до 90%.

Для сыпучих материалов определяется пустотность (межзерновая пористость). Истинная, средняя плотности и пористость материалов - взаимосвязанные величины. От них зависят прочность, теплопроводность, морозостойкость и другие свойства материалов. Примерные значения их для наиболее распространенных материалов приведены в табл. 1.1.

Влажность W - содержание воды в материале в данный момент. Она определяется отношением воды, содержащейся в материале в момент взятия пробы для испытания, к массе сухого материала. Вычисляется в %по формуле:

где m вл, m с - масса влажного и сухого материалов, г.

Водостойкость - способность материала сохранять свою прочность при насыщении водой. Она оценивается коэффициентом размягчения КРАЗМ, который равен отношению предела прочности материала при сжатии в насыщенном водой состоянии R В, МПа, к пределу прочности сухого материала R СУХ, МПа:

К РАЗМ= R В / R СУХ.

Для разных материалов К РАЗМ = 0…1. Так, глина при увлажнении не имеет прочности, ее К РАЗМ = 0. Металлы, стекло полностью сохраняют прочность в воде, для них К РАЗМ = 1. Строительные материалы с коэффициентом размягчения меньше 0,8 не применяют во влажной среде.

Таблица 1.1

К основным механическим свойствам материалов относят прочность, упругость, пластичность, релаксацию, хрупкость, твердость, истираемость и др.

Прочность — способность материалов сопротивляться разру-шению и деформациям от внутренних напряжений, возникающих в результате воздействия внешних сил или других факторов, таких как неравномерная осадка, нагревание и т. п. Оценивается она пределам прочности. Так называют напряжение, возникающее в материале от действия нагрузок, вызывающих его разрушение.

Различают пределы прочности материалов при сжатии, рас-тяжении, изгибе, срезе и пр. Они определяются испытанием стандартных образцов на испытательных машинах. Предел прочности при сжатии и растяжении R СЖ(Р) , МПа, вычисляется как отношение нагрузки, разрушающей материал Р, Н, к площади поперечного сечения F, мм 2:

Предел прочности при изгибе R И, МПа, вычисляют как отношение изгибающего момента M, Н х мм, к моменту сопротивления образца, мм 3:

Каменные материалы хорошо работают на сжатие и значительно хуже (в 5-50 раз) на растяжение и изгиб. Другие материалы — металл, древесина, многие пластмассы — хорошо работают как на сжатие, так и на растяжение и изгиб.

Важной характеристикой материалов является коэффициент конструктивного качества . Это условная величина, которая равна отношению предела прочности материала R, МПа, к его относительной плотности:

Коэффициент конструктивного качества для тяжелого бетона марки 300 равен 12,5; стали марки Ст5-46, древесины дуба при растяжении — 197. Материалы с более высоким коэффициентом конструктивного качества являются и более эффективными.

Упругость — способность материалов под воздействием нагрузок изменять форму и размеры и восстанавливать их после прекращения действия нагрузок.

Упругость оценивается пределом упругости б уп, МПа, который равен отношению наибольшей нагрузки, не вызывающей остаточных деформаций материала, P УП, Н, к площади первоначального поперечного сечения F 0 , мм 2:

б УП =Р УП /F 0

Пластичность — способность материалов изменять свою форму и размеры под воздействием нагрузок и сохранять их после снятия нагрузок. Пластичность характеризуется относительным удлинением или сужением.

Разрушение материалов может быть хрупким или пластичным. При хрупком разрушении пластические деформации незначительны.

Релаксация — способность материалов к самопроизвольному снижению напряжений при постоянном воздействии внешних сил. Это происходит в результате межмолекулярных перемещений в материале. Релаксация оценивается периодом релаксации — временем, за которое напряжение в материале снижается в е = 2,718 раза, где е — основание натурального логарифма. Период релаксации составляет от 1 х 10 -10 секунд для материалов жидкой консистенции и до 1 х 10 10 секунд (десятки лет) у твердых.

Твердость — способность материала оказывать сопротивление проникновению в него более твердого материала.

Для разных материалов она определяется по разным методикам. Так, при испытании природных каменных материалов пользуются шкалой Мооса, составленной из 10 минералов, расположенных в ряд, с условным показателем твердости от 1 до 10, когда более твердый материал, имеющий более высокий порядковый номер, царапает предыдущий. Минералы расположены в следующем порядке: тальк или мел, гипс или каменная соль, кальцит или ангидрит, плавиковый шпат, апатит, полевой шпат, кварцит, топаз, корунд, алмаз.

Твердость металлов, бетона, древесины, пластмасс оценивают вдавливанием в них стального шарика, алмазного конуса или пирамиды.

Твердость материала не всегда соответствует прочности. Так, древесина имеет прочность, одинаковую с бетоном, но значительно меньшую твердость.

Истираемость — способность материалов разрушаться под действием истирающих усилий. Истираемость И в г/см 2 вычисляется как отношение потери массы образцом m 1 -m 2 в г от воздействия истирающих усилий к площади истирания F в см 2 ;

И = (m 1 - m 2) / Р.

Определяется И путем испытания образцов на круге истирания или в полочном барабане. Эта характеристика учитывается при назначении материалов для пола, лестничных ступеней и площадок, дорог.

Износ — свойство материала сопротивляться одновременному воздействию истирания и ударов. Износ материала зависит от его структуры, состава, твердости, прочности, истираемости. Износ определяют на пробах материалов, которые испытывают во вращающемся барабане со стальными шарами или без них. Чем больше потеря массы пробы испытанного материала (в процентах к первоначальной массе пробы), тем меньше его сопротивление износу.

Хрупкость — свойство материала внезапно разрушаться под воздействием нагрузки, без предварительного заметного изменения формы и размеров. Хрупкому материалу, в отличие от пластичного, нельзя придать при прессовании желаемую форму, так как такой материал под нагрузкой дробится на части, рассыпается. Хрупки камни, стекло, чугун и др.

Механические свойства характеризуют способность материала сопротивляться действию внешних сил или иных факторов (например, температурных), вызывающих в нем внутренние напряжения. Основные механические свойства строительных материалов: прочность, твердость, износостойкость, деформативность (упругость, пластичность).

Прочность - свойство материала в определенных условиях и пределах воспринимать нагрузки или другие воздействия, вызывающие в нем внутренние напряжения, без разрушения.

Частицы, из которых состоит твердый материал, удерживаются в равновесии силами взаимного сцепления. Если к какому-либо образцу материала приложить внешнюю силу F, например растягивающую (рис. 2.3), то ее действие равномерно распределится на все частицы материала: материал окажется в напряженном состоянии. Напряжение вызовет изменение расстояний между частицами - материал начнет деформироваться (в нашем случае - растягиваться).

Для определения значения напряжений а (МПа), т. е. внутренних сил, приходящихся на единицу площади поперечного сечения материала и возникающих в материале при приложении к нему внешней силы F (кН), мысленно делают поперечный разрез образца. Чтобы образовавшиеся половинки образца остались в равновесии, внешней силе F должна противодействовать равная ей внутренняя сила а А, где А (м2) - площадь поперечного сечения образца материала, откуда а = F/A.

Рис. 2.3. Схема определения напряжений а в брусе при его растяжении

Чем выше модуль упругости материала, тем меньше он деформируется. Так, модуль упругости каучука 10…20 МПа, а стали - 2 * 105 МПа, это значит, что под действием одной и той же силы деформация стали будет в 10 раз меньше, чем каучука при прочих равных условиях.

При увеличении действующей силы напряжения в материале возрастают и могут превысить силу сцепления частиц - материал разрушится.

На практике разрушение материала начинается значительно раньше того момента, когда напряжения в нем достигнут теоретического предельного значения. Это объясняется тем, что в реальных материалах много дефектов самого различного уровня (начиная от молекулярного и кончая макродефектами, например трещинами).

Прочность материала характеризуется значением предела прочности R - напряжением в испытуемом образце материала в момент его разрушения.

В зависимости от характера приложения силы FH вида возникающих напряжений различают прочность при сжатии, растяжении, изгибе, скалывании (срезе) (рис. 2.4).

Предел прочности материала определяют на образцах, форму и размеры которых устанавливают стандарты на этот материал. Так, для оценки прочности бетона приняты образцы-кубы размером 150х150х150 мм. Марка цемента определяется на образцах- балоч-ках 40 х 40 х 160 мм. Для определения прочности горных пород обычно применяют образцы-цилиндры.

Предел прочности бетона при сжатии обычно составляет 10…50 МПа. Чтобы разрушить бетонный куб размером 150 х 150 х х 150 мм с Rcx - 10 МПа, надо приложить усилие F=RCXA = = 10(0,15 х 0,15) = 225 кН (22,5 т). Поэтому для испытания материалов применяют специальные машины, снабженные механизмом для силового воздействия на образец и измерительными устройствами. Так, предел прочности при сжатии определяют с помощью гидравлических прессов, развивающих усилие до 10 кН (100т) и более (рис. 2.5).

Для испытания на прочность образец устанавливают на нижнюю плиту пресса, зажимают верхней плитой и включают масляный насос. За повышением давления масла наблюдают по манометру, фиксируя давление, при котором начинается разрушение материала.

Рис. 2.4. Схема нагружения образца при определении пределов прочности материала на сжатие (а), растяжение (б), изгиб (в) и срез (г)

Предел прочности при растяжении рассчитывается по той же формуле.

Расчетные формулы при изгибе и скалывании имеют другой вид.

Прочность при сжатии, растяжении и изгибе у одного и того же материала может сильно различаться.

У природных и искусственных каменных материалов прочность при сжатии в 5… 15 раз выше, чем при изгибе и растяжении. У древесины, наоборот, прочность при изгибе выше прочности при сжатии (в 1,5…2 раза).

Значение Кр для разных материалов колеблется от 0 (необожженная глина) до 1 (стекло, сталь, битум).

Упругость и пластичность. Если взять два шарика - резиновый и глиняный - и начать их сжимать, то они оба под действием приложенной силы деформируются. Как только прекращается действие силы, резиновый шарик восстанавливает свою форму, а глиняный останется деформированным.

Материалы, ведущие себя подобно резиновому шарику, т. е. восстанавливающие свою форму и размеры после снятия нагрузки, называются упругими. Количественной мерой упругости служит модуль упругости Е, рассмотренный ранее.

Чем выше Е у материала, тем большее усилие требуется для деформации материала. Идеально упругих материалов практически нет. При высоких нагрузках, в особенности прилагаемых длительное время, почти все материалы обнаруживают пластические деформации; как принято говорить: материал начинает «течь».

Материалы, ведущие себя подобно влажной глине, т. е. сохраняющие деформации после снятия нагрузки, называются пластичными. Соответственно обратимые деформации называют упругими, а необратимые - пластическими.

К упругим материалам относятся природные и искусственные каменные материалы, стекло, сталь; к пластичным - битумы (при положительных температурах), некоторые виды пластмасс, свинец, бетонные и растворные смеси до затвердевания.

Твердость - способность материалов сопротивляться проникновению в них других материалов. Твердость - величина относительная, так как твердость одного материала оценивается по отношению к другому. Самый простой метод определения твердости - по шкале твердости (см. табл. 4.1). В эту шкалу входят 10 минералов, расположенных по возрастающей твердости, начиная от талька (твердость 1) и кончая алмазом (твердость 10). Твердость исследуемого материала определяют, последовательно царапая его входящими в шкалу твердости минералами.

Обычно твердость определяют на специальных приборах. Так, для оценки твердости металлов и других твердых материалов применяют методы Бринелля или Роквелла, основанные на вдавливании под определенной нагрузкой в испытуемый образец шарика из закаленной стали или алмазного конуса. По диаметру отпечатка рассчитывают число твердости НВ (по Бринеллю) или HR (по Роквеллу).

Высокая прочность материала не всегда говорит о его твердости. Так, древесина по прочности при сжатии сравнима с бетоном, а при изгибе и растяжении во много раз превосходящая его, значительно уступает бетону в твердости.

Износ - изменение размеров, массы и состояния поверхности материала вследствие истирающих и ударных воздействий. Износ может быть абразивным, кавитационным и др.

Износостойкость у строительных материалов оценивается в основном для заполнителей, используемых в дорожных бетонах. Оценка производится по потере массы пробы материала при его испытании по стандартной методике в полочном барабане.

Истираемость - свойство поверхностного слоя материала сопротивляться абразивному износу. Истираемость зависит от совокупности свойств материала: твердости, пластичности, упругости и др. Истираемость не оценивается расчетным путем, а определяется экспериментально. Для различных материалов используются разные, но строго регламентируемые стандартами методы. Например, истираемость бетона определяют с помощью круга истирания ЛКИ с использованием кварцевого песка в роли абразива (рис. 2.6); истираемость линолеума - с помощью вращающихся барабанов, обтянутых наждачной бумагой (рис. 2.7). Истираемость оценивается по потере массы или толщины образцов материала после цикла стандартных испытаний. Показатель истираемости очень важен для материалов, используемых для покрытий полов, лестниц и т. п.

Полнотекстовый поиск:

Где искать:

везде
только в названии
только в тексте

Выводить:

описание
слова в тексте
только заголовок

Главная > Шпаргалка >Строительство


. Механические свойства строительных материалов

Прочность - свойство материала сопротивляться разрушению от внутренних напряжений, возникающих в нем при воздействии внешних сил. В конструкциях строительные материалы при действии нагрузок испытывают различные деформации и соответствующие им напряжения: сжатия, растяжения, изгиба, среза и др.

В зависимости от того, как материалы ведут себя под нагрузкой, все они подразделяются на пластичные (углеродистые стали, алюми­ний, медь) и хрупкие (бетон, природные камни, чугун и др.).

Различные материалы по-разному сопротивляются деформаци­ям.

Мерой прочности материалов является предел прочности. Предел прочности - максимальное напряжение, при котором происходит разрушение образца материала.

Предел прочности при сжатии R сж или предел прочности при растяжении R р, МПа, равен отношению разрушающей нагрузки F площади поперечного сечения образца А, подвергающегося испыта­нию, и вычисляется по формуле (СТБ 4.206-94)

площадь поперечного сече­ния образца, мм 2 .

Предел прочности при изгибе образца прямоугольного сечения при действии одной сосредоточенной силы, приложенной по середине образца, вычисляют по формуле


где I - расстояние между опорами, мм; b и h - ширина и высота по­перечного сечения образца, мм.

I - на сжатие: а - плотный природный камень;

б - пористый природный камень; в - бетон;

г - кирпич (куб склеен из двух половинок); II - на изгиб:

а - цементный раствор; б- кирпич; III - на растяжение: сталь

соответствовать требованиям ГОСТа. Для испытания материалов на сжатие образцы изготовляют в виде куба или цилиндра, на растяже­ние - в виде призмы или стержня или в виде восьмерки (для биту­ма), на изгиб - в виде балочки (призмы), кирпича (в натуре) на двух опорах. Испытывают образцы до разрушения в лабораториях на гид­равлическом прессе или разрывных машинах.

Различные материалы обладают неодинаковым пределом прочности при сжатии: от 0,5 (торфяные плиты) до 1000 МПа и более (высокопрочная сталь).

Прочность конструкционных строительных материалов характе­ризуется маркой (М), которая, как правило, совпадает по значению с минимально допустимым пределом прочности при сжатии. Марка ма­териала по прочности является важнейшим показателем его качества.

Для каменных материалов марку определяют по пределу проч­ности при сжатии (в ряде случаев с учетом

Прочность материалов зависит от структуры, пористости, влаж­ности, дефектов строения, длительности и характера приложения нагрузки, среды, температуры, состояния поверхности и других фак­торов. Часто для оценки эффективности конструкционных строитель­ных материалов используют коэффициент конструктивного качества (к.к.к.) материала, который численно определяют отношением преде­ла прочности при сжатии к средней плотности материала:

Лучшие конструкционные материалы имеют высокую проч­ность при малой средней плотности. Например, для алюминия к.к.к.=4,61; для древесины к.к.к. = 0,8; для стали к.к.к. = 0,5...1,0; для пластмасс к.к.к. = 0,5...0,25 .

Твердость - способность материала сопротивляться проникно­вению в него другого, более твердого тела.

Твердость определяется структурой материала. Количественно показатель твердости (число твердости НВ) оценивают различными способами. Твердость битума определяют на приборе пенетрометре по глубине проникания в битум иглы под нагрузкой. Твердость окрасоч­ной пленки определяют маятниковым прибором. Твердость древеси­ны, металлов, бетона, пластмасс и некоторых других материалов оп­ределяют, вдавливая в них стальной шарик (метод Бринелля) или твердый наконечник (в виде конуса или пирамиды). В этом случае твердость материала характеризует его способность сопротивляться пластической деформации на поверхности образца. При вдавливании шарика определенного диаметра из закаленной хромистой стали на поверхности материала образуется сферический отпечаток.

Число твердости определяют по формуле

площадь поверхности отпечатка, мм 2 .

Твердость каменных строительных материалов, природных камней и минералов оценивают шкалой твердости Мооса (включает минералы в порядке возрастающей твердости от 1 до 10), представ­ленной десятью минералами, из которых каждый последующий своим острым концом царапает все предыдущие (табл. 1.3).

Твердость влияет на обрабатываемость материала. Высокая прочность материала не всегда свидетельствует о его высокой твердо­сти. Например, древесина по прочности при сжатии равна бетону, а по прочности при изгибе превосходит его, однако твердость древесины значительно меньше, чем у бетона.

Характеристика твердости имеет значение при выборе мате­риалов для покрытия полов, лестниц, дорожных покрытий, при опре­делении способа механической обработки лицевой поверхности мате­риалов.

Истираемость - свойство материалов уменьшаться в объеме и массе под действием истирающих усилий. Сопротивление истиранию определяют для материалов, которые в процессе эксплуатации под­вергаются истирающему воздействию. Это важное свойство для полов, лестничных ступеней, дорожных покрытий.

Истираемость И вычисляют по формуле

где т, т 1 - масса образца соответственно до и после испытания, г;

А - площадь истираемой поверхности, см 2 .

Упругостью называют способность материала восстанавливать первоначальную форму и размеры после снятия нагрузки, которая вызвала эти изменения. Наибольшее напряжение, до которого в ма­териале возникают только упругие деформации, называют пределом упругости. У каждого материала есть постоянная характеристика - модуль упругости Е, Па или МПа. Модуль упругости характеризует жесткость материала, т.е. его способность сопротивляться упругим деформациям.

Упругими являются резина, герметизирующие прокладки, ла­кокрасочные пленки, сталь, древесина и другие материалы.

Пластичность - свойство твердого материала изменять без раз­рушения форму и размеры под действием нагрузки и сохранять их по­сле ее снятия. Пластичными являются глиняное тесто, бетонные и рас­творные смеси, битум при положительных температурах, свинец и др.

Хрупкость - свойство твердого материала внезапно разру­шаться под действием внешних сил без предварительной остаточной деформации.

кристаллическим, стеклообраз­ным, но и полимерным материалам. Большинство материалов при понижении температуры становятся хрупкими (битумы, некоторые пластмассы, металлы).

Малоуглеродистая сталь, пластичная при комнатной темпера­туре, при сильном охлаждении становится хрупкой. К хрупким мате­риалам относятся стекло, керамические изделия, чугун.

Ударная вязкость или сопротивление удару - свойство, харак­теризующее сопротивление материала разрушению или деформиро­ванию при ударе. Хрупкие материалы плохо сопротивляются удару.

Сопротивление удару важно для материалов дорожных покры­тий, а также конструкций, подвергаемых при эксплуатации динами­ческим (ударным) нагрузкам.

Для рулонных материалов (отделочных, обоев и др.) важными свойствами являются разрывная прочность (при надрезе), прочность при проколе, продавливании и т.п.

Износ - разрушение материала при совместном действии ис­тирания и удара. Износ материала зависит от его структуры, состава, твердости, прочности, истираемости. Прочность при износе оценива­ется потерей в массе, выраженной в процентах. Износ важен для ма­териалов полов, ступеней лестниц, дорожных покрытий, лакокрасоч­ных пленок.

Специальные свойства строительных материалов

К специальным свойствам относятся: реологические и химические и технологические свойства.

Реологические свойства называют структурно-механическими.

Реология - наука о деформациях и текучести веществ. Объект реологии - жидкие и пластичные вещества. В реологии жидкостями считаются вещества, которые, под действием приложенной силы, не­ограниченно деформируются, т.е. текут. Идеально твердые тела под действием силы деформируются упруго (обратимо) и восстанавливают свою форму после окончания действия силы. Реальные материалы, в том числе бетонные и растворные смеси, краски, мастики сочетают в себе свойства жидких и твердых тел. В зависимости от преобладания того или иного свойства говорят о вязкотекущих или пластично-вязких смесях.

К основным реологическим характеристикам относятся: вяз­кость, предельное напряжение сдвига, тиксотропия.

Вязкость - внутреннее трение жидкости, препятствующее пе­ремещению одного ее слоя относительно другого. Вязкость характери­зуется коэффициентом динамической вязкости г) и измеряется в Па·с.

В строительстве применяют большей частью пластично-вязкие смеси (строительные растворы, краски, гипсовое, цементное тесто и т.д.). По своим свойствам пластично-вязкие тела занимают промежуточное положение между жидкими и твердыми телами. Так, тесто можно разрезать ножом (что нельзя сделать с жидкостью), но вместе с тем тесто принимает форму сосуда, в который оно помещено, т.е. ведет се­бя как жидкость.

Наблюдая за растворной смесью или краской под нагрузкой, можно заметить, что при малых нагрузках они ведут себя как твер­дые тела, проявляя упругие свойства. При увеличении нагрузки у них появляются необратимые пластические деформации. При даль­нейшем увеличении нагрузки эти смеси начинают течь, как вязкие жидкости.

Предельное напряжение сдвига - величина внутренних на­пряжений, при которой материал начинает необратимо деформиро­ваться (течь), т.е. превращается в вязкую жидкость. Этот показатель у строительных смесей также называют структурной прочностью.

В структурированных системах процесс разрушения структуры протекает постепенно: сначала более медленно, затем ускоряется, а при дальнейшем увеличении напряжения или скорости деформации (течения) структура полностью разрушается. Причиной разрушения структуры материала является нарушение внутренней связи между его частицами при указанных напряжениях.

Многие пластично-вязкие смеси при повторяющихся (динами­ческих) воздействиях могут обратимо терять структурную вязкость, временно превращаясь в вязкую жидкость. Это свойство, называемое тиксотропией , характерно для смесей на основе минеральных вя­жущих (бетонных и растворных смесей), красок и мастик. Физическая основа тиксотропии - разрушение структурных связей внутри пла­стично-вязкого материала. После прекращения механического воз­действия материал вновь обретает структурную прочность.

Явление тиксотропии используется при виброуплотнении бе­тонных смесей и нанесении мастичных и окрасочных составов шпате­лем или кистью. В строительных лабораториях реологические свойст­ва смесей оцениваются применительно к условиям их использования в строительстве. В этом случае определяют не конкретные реологиче­ские характеристики (вязкость, предельное напряжение сдвига и т.п.), а обобщенные показатели: консистенцию вяжущего теста, удобоукладываемость растворной или бетонной смеси и т.д., используя для этого специальные приборы и методы определения.

Химические свойства характеризуют способность материалов противостоять разрушающему действию солей, кислот, щелочей, ма­сел, нефтепродуктов, с которыми в процессе эксплуатации они могут находиться в соприкосновении. Основными химическими свойствами являются химическая, коррозионная и биологическая стойкость, адгезионная способность, экологическая чистота.

Химическая стойкость - способность материалов сопротив­ляться разрушительному влиянию щелочей, кислот, растворенных в воде солей и газов.

Стойкими к воздействию кислот и растворов солей являются пласт­массы на основе полиэтилена, полистирола, поливинилхлорида. Вы­сокой кислотостойкостью отличаются углеродистые стали, чугуны, гранит, каменное литье из базальта, шлакоситаллы. К шелочестойким материалам относятся хромоникелевые стали, латуни (нике­левые), бетоны на глиноземистом цементе.

Коррозионная стойкость - свойство материала сопротивлять­ся коррозии, т.е. разрушению, вызванному действием внешней агрес­сивной среды.

Коррозия (от лат. corrodo - разъедаю) бывает химической и электрохимической. Благоприятной средой для развития химической коррозии является вода как пресная, так и морская. Электрохимиче­ская коррозия образуется в результате воздействия растворителей, кислот, щелочей. Коррозии подвергаются металлы, бетон, горные по­роды. Коррозия горных пород и каменных материалов - это их рас­творение под влиянием химического воздействия воды. Коррозия бе­тона - это разрушение цементного камня от действия пресных, минерализованных вод.

коррозионно-стойкими. -керамические материалы с плотным черепком, стекло, асбесты, легированные стали, сплавы титана и алюминия, многие пластмассы и др.

Биологическая стойкость - способность материалов сопротив­ляться влиянию процессов жизнедеятельности бактерий и других живых организмов (биологической коррозии).

К химическим свойствам материалов относят адгезионную спо­собность . Адгезия (от лат. adhaesio - прилипание) - сцепление и связь между находящимися в контакте поверхностями разнообразных по составу твердых или жидких материалов.

Адгезионная способность проявляется в сопротивлении отрыву или разделению контактирующих материалов. Количественной оцен­кой адгезии является усилие отрыва, отнесенное к единице площади контакта.

Высокой адгезионной способностью обладают битумные и дегте­вые, магнезиальные и другие вяжущие. Это свойство используется при изготовлении кровельных, гидроизоляционных материалов, фиб­ролита, ксилолита (материала для полов); оно имеет большое значе­ние при склеивании, сварке, нанесении защитно-декоративных по­крытий (лакокрасочных, эмалевых и др.).

В связи с широким внедрением в строительную практику синте­тических полимерных материалов важной характеристикой качества строительных материалов является их экологическая чистота (экологичность ).

Под экологической чистотой следует понимать отсутствие ток­сичности, вредного биологического действия на людей.

В состав пластмасс входят стабилизаторы, полимеры и другие компоненты, которые имеют резкий сильный запах и могут вызывать загрязнение внешней среды. При выполнении лакокрасочных работ следует учитывать ядовитость (токсичность) некоторых пигментов, со­держащих соединения свинца, меди, мышьяка. Существуют нормы предельно допустимых концентраций вредных веществ и методы ток­сикологической стандартизации сырья, полуфабрикатов и готовой продукции. Применение экологически грязных материалов, обла­дающих высокой токсичностью, в зданиях и сооружениях категориче­ски запрещено.

По данным Минздрава Республики Беларусь коэффициент экологичности древесины составляет 1,0; ячеистого газосиликата - 2,0;

керамического кирпича - 10,0.

Технологические свойства строительных материалов

Технологическими называют свойства материала воспринимать определенные технологические операции с целью изменения формы, размеров, характера поверхности.перерабатывать сырье и получать доброкачественную продукцию из исходных материалов при принятой технологии с использованием технологического обору­дования.

Удобоукладываемость бетонной смеси характеризует ее способ­ность заполнять форму и уплотняться при помощи вибрации. Удобо­укладываемость растворной смеси характеризует ее способность ук­ладываться тонким слоем на пористое основание и заполнять все его неровности.

Технологические свойства древесины характеризуются легко­стью обработки: ее можно пилить, строгать, сверлить, забивать гвоз­ди, склеивать и т.д. Благодаря высокой технологичности полимерных материалов формообразование пластмасс осуществляется разнооб­разными способами: экструзией, литьем под давлением, каландрированием и вальцеванием, прессованием. Широкую номенклатуру ме­таллических изделий получают различными способами: прокаткой, волочением, прессованием и т.д., что объясняется высокими пласти­ческими свойствами и пластичностью материалов.

Эстетические (декоративно - худо­жественные) свойства

Цвет - зрительное ощущение, вы­зываемое воздействием на глаза пото­ков электромагнитного излучения в диапазоне видимой части спектра, отраженного поверхностью материала или прошедшего через него.

Челове­ческий глаз способен различать до трехсот различных оттенков ахромати­ческих и десятки тысяч хроматичес­ких цветов.

В качестве стандартной, утвержден­ной Международной Осветительной ко­миссией (МОК), принята система ко­ординат, основными цветами которой служат три реально невоспроизводи­мых цвета, обозначаемые через X, Y , Z и выбранные так, чтобы реальные цве­та находились внутри соответствую­щего цветового треугольника. Цвет, оп­ределяемый тремя координатами X, У и Z, принимается как единое целое. Координаты цвета получают рас­четным путем, используя данные за­меров при помощи специальных при­боров: спектрофотометров, компара­торов, колориметров.

Основные характеристики цвета - цветовая тональность, светлота и насы­щенность.

Цветовая тональность показывает, к какому участку видимого спектра относится цвет строительного мате­риала. Количественно цветовые тона измеряются длинами волн.

Светлота характеризуется относи­тельной яркостью поверхности строи­тельного материала, определяемой ко­эффициентом отражения, который представляет соответственно отноше­ние отраженного светового потока к падающему.

Насыщенность цвета - степень от­личия хроматического цвета от ахро­матического той же светлоты.

Цветовые атласы - альбомы или наборы большого числа ахроматичес­ких и хроматических накрасок, предва­рительно систематизированных.

Картотека цветовых эталонов - комплект карточек различных цветов, каждому из которых присвоен опре­деленный номер. При этом каждая карточка имеет два гнезда, в которые вставляются глянцевая и матовая накраски одного цвета на триацетатной пленке размером 115Х6 мм. Размер каждой карточки 130Х180 мм. Цветовые характеристики карточек в каждой партии перед выпуском измеря­ются при помощи фотоэлектрического колориметра. Существуют определен­ные правила хранения карточек и поль­зования ими. Максимальный срок их эксплуатации 5 лет.

Фактура - видимое строение по­верхности строительного материала, характеризуемое рельефом и степенью блеска. Выделяют фактуры рельеф­ные и гладкие, матовые, глянцевые и блестящие.

Рисунок - различные по форме, размеру, расположению, цвету отдель­ные составные элементы на поверх­ности строительного материала. При­родный рисунок на поверхности дре­весины или природного камня на­зывается текстурой .

Координация размеров в строительстве

Геодезические работы в строительстве могут быть рассмотрены как комплексный технологический процесс, сопровождающий все этапы воз­ведения сооружения, в ходе выполнения которого решаются две взаимо­зависимые задачи:

обеспечение строительства объекта в соответствии с установленными в проектной документации геометрическими параметрами;

обеспечение пространственной взаимосвязи параметров элементов и конструкций с точностью, обеспечивающей функционирование строитель­ного объекта.

Таким образом, размеры элементов и конструкций, их геометрическая связь в сооружениях определяют объемы, точность и методы геодезиче­ских измерений.

Важнейшим правилом, определяющим геометрические построения и обеспечивающим типизацию и стандартизацию при проектировании и возведении строительных объектов, служит модульная координация раз­меров в строительстве (МКРС), устанавливающая кратность всех размеров и габаритов величине основного модуля М, за который прини­мают 100 мм. Целесообразно применять прямоугольную модульную про­странственную координационную систему (рис. 1, а), но допускаются также косоугольные, центрические (рис. 1, б) и другие системы.

Координационная система зависит от объемно-планировочного реше­ния здания (сооружения), определяемого назначением объекта. Пере­числим основные элементы объемно-планировочных решений строитель­ного объекта:

шаг - расстояние между осями стен и других опорных конструкций (в зависимости от направления в плане шаг может быть продольным и поперечным);

пролет - расстояние между осями несущих конструкций в направле­нии, соответствующем продольным размерам основных несущих конст­рукций перекрытия или покрытия. В зависимости от конструктивной схемы пролет по направлению совпадает с поперечным или продольным шагом;

высота этажа - расстояние по вертикали между уровнями пола смежных этажей, а в верхних этажах и одноэтажных зданиях - расстоя­ние от уровня пола до отметки верха чердачного перекрытия, в бесчер­дачных - до низа основной несущей конструкции.

При назначении координационных размеров объемно-планировочных и конструктивных элементов наряду с основным принимаются производ­ные модули вида КМ:

укрупненные (мультимодули) 60М; ЗОМ; 15М; 12М; 6М и ЗМ, соответ­ственно равные 6000; 3000; 1500; 1200; 600 и 300 мм;

По конфигурации По объемно-планировочному решению: 1. секционная 2. ...

  • Шпаргалка по философии: ответы на экзаменационные билеты

    Шпаргалка >> Философия

    Шпаргалка по философии: ответы на экзаменационные билеты 1. ... (его произведения живописи, скульптуры и архитектуры , работы по математике, биологии, геологии, анатомии... отличать от животного и по плоским ногтям, и по улыбке, и по уму, и по религии и т. д. Но...

  • Шпаргалка по Истории (5)

    Шпаргалка >> История

    Стороны специально организованной прокуратуры (с 1722 г.);"Шпаргалка по отечественной истории"3) были сформированы центральные... , скульптура и архитектура данного периода находились под влиянием европейского классицизма. "Шпаргалка по отечественной истории" ...

  • Механические свойства характеризуют способность материала сопротивляться разрушающему или деформирующему воздействию внешних сил.

    Механическими свойствами являются прочность. упругость, пластичность, хрупкость, сопротивление удару, твердость, истираемость. Кроме того, под воздействием внешних сил (нагрузок) материалы в зданиях и сооружениях могут испытывать и такие внутренние напряжения, как сжатие, растяжение, изгиб, срез и др. Напряжение измеряют в физических величинах.

    Прочность материала характеризуется пределом прочности (при сжатии, изгибе, растяжении, срезе). Пределом прочности называют напряжение, соответствующее нагрузке, при которой происходит разрушение образца материала.

    Прочность строительных материалов обычно характеризуется маркой, значение которой соответствует величине предела прочности при сжатии, полученному при испытании образцов стандартных размеров. Предел прочности при сжатии строительных материалов колеблется в широких пределах - от 0,5 (тор- фоплиты) до 1000 МПа и выше (высокопрочная сталь).

    Упругостью называют свойство материала восстанавливать первоначальную форму и размеры после снятия нагрузки, под действием которой формы материала деформируются. В качестве примера упругих материалов можно назвать резину, сталь, древесину.

    Пластичность - это способность материала под влиянием действующих усилий изменять свои формы и размеры без образования разрывов и трещин и сохранять изменившуюся форму и размеры после снятия нагрузки. Примером пластичных материалов служит глиняное тесто, разогретый асфальт.

    Хрупкость - свойство материала мгновенно разрушаться под действием внешних сил при незначительных деформациях (например, стекло, керамика).

    Сопротивление удару - способность материала сопротивляться ударным воздействиям.

    Твердостью материала называют свойство сопротивляться прониканию ь него другого, более твердого материала. Из природных каменных материалов наименьшую твердость по десятибалльной шкале твердости минералов имеет тальк (1), наибольшую - алмаз (10).

    Истираемостью называют способность материала уменьшаться в объеме и массе под воздействием истирающих усилий.

    Свойство строительных материалов сопротивляться истирающим и ударным нагрузкам необходимо учитывать при подборе материалов для дорожных покрытий, полов промышленных зданий, для ступеней, лестниц, бункеров.

    Главными свойствами строительных материалов, по которым определяют возможность их применения в элементах здания, являются прочность, плотность, теплопроводность, влажность и водопроницаемость, морозостойкость, огнестойкость.

    Прочность - мера сопротивления материала разрушению под действием напряжений, возникающих от нагрузки. Конструкции здания испытывают определенные нагрузки, под действием которых они сжимаются, растягиваются или изгибаются.

    Плотность - величина, измеряемая отношением массы вещества к единице его объема в естественном состоянии (кг/м3), т. е. с имеющимися в нем порами и пустотами. Чем плотнее материал, тем меньше в нем пустот и пор, тем больше его плотность. От плотности материала зависят вес конструкций, теплоизоляционные качества и прочность.

    Теплопроводность - количества теплоты, проходящей через ограждение толщиной 1 м, площадью 1 м2 при постоянной разности температур наружного и внутреннего воздуха 1 °С. Чем меньше теплопроводность, тем лучше теплозащитные качества материала.

    Теплопроводность материалов зависит от плотности и степени влажности. Материалы, имеющие меньшую плотность и влажность, обладают меньшей теплопроводностью.

    Влажность - содержание влаги в материале. Влажность определяют в процентах от массы абсолютно сухого материала. Чем меньше влажность, тем меньше плотность и теплопроводность и выше прочность материала.

    Водопроницаемость - величина, характеризуемая количеством воды, проходящей в течение 1 ч под постоянным давлением через 1 см2 испытуемого материала. Например, водопроницаемость стыков панелей наружных стен испытывают в особой камере на действие косого дождя при определенной силе ветра. Для кровельных материалов (например, толь, рубероид) водопроницаемость характеризуется временем, в течение которого вода под давлением проходит через материал и появляется с другой стороны образца.

    Морозостойкость - способность материалов в насыщенном водой состоянии сопротивляться разрушению при многократном замораживании и оттаивании. Испытание материалов на морозостойкость производится в специальных камерах. Марки изделий по морозостойкости обозначают количесто выдерживаемых циклов замораживания и оттаивания в водонасыщен- ном состоянии.

    Огнестойкость - способность материала выдерживать действие высокой температуры без потери прочности. Предел огнестойкости конструкций из различных материалов оценивается по времени (в ч), которое выдерживает конструкция до потери прочности или устойчивости. Материал, из которого выполнена конструкция, характеризуется по его способности воспламеняться, гореть или тлеть после удаления источника огня. Материалы, которые под воздействием огня или высокой температуры не воспламеняются, не тлеют и не обугливаются, называются несгораемыми. Материалы, горение и тление которых прекращается после удаления источника огня, называются трудносгораемыми, а которые горят и тлеют после удаления источника огня - сгораемыми.

    Твердость - способность материалов сопротивляться проникновению в них других материалов. Твердость - величина относительная, так как твердость одного материала оценивается по отношению к другому. Самый простой метод определения твердости - по шкале твердости. В эту шкалу входят 10 минералов, расположенных по возрастающей твердости, начиная от талька (твердость 1) и кончая алмазом (твердость 10). Твердость исследуемого материала определяют, последовательно царапая его входящими в шкалу твердости минералами.

    Обычно твердость определяют на специальных приборах. Так, для оценки твердости металлов и других твердых материалов применяют метод Бринелля, основанный на вдавливании под определенной нагрузкой в испытуемый образец шарика из закаленной стали. По диаметру отпечатка от шарика рассчитывают число твердости НВ.

    Высокая прочность материала не всегда говорит о его твердости. Так, древесина, хотя по прочности при сжатии равна бетону, а при изгибе и растяжении превосходит его, имеет значительно меньшую, чем у бетона, твердость.

    Износостойкость - способность материала противостоять воздействию на него сил трения и ударных воздействий от движущихся предметов. Определяют ее на специальных приборах, снабженных абразивными насадками и моделирующих реальный процесс изнашивания. Износостойкость-важное свойство материалов, используемых для покрытий полов, дорог и т. п.