Основные концепции пространства и времени в физике. Что такое физическое пространство? Примеры пространства в физике

Основные концепции пространства и времени в физике. Что такое физическое пространство? Примеры пространства в физике
Основные концепции пространства и времени в физике. Что такое физическое пространство? Примеры пространства в физике

Что такое пространство? Есть ли у него границы? Какая наука может дать правильные ответы на эти вопросы? С этим мы и попробуем разобраться в нашей статье.

Философское понятие

Прежде чем давать характеристику пространству, надо понимать, что этот термин далеко не однозначен. Понятие пространства фигурирует в математике, физике, географии, и фантастике. Различные дисциплины понимают его по-разному и находят свои трактовки в зависимости от поставленных задач. Самым простым и приземленным определением является следующее: пространство - это место, в котором что-либо вмещается; расстояние между различными предметами.

Философия рассматривает его как одну из фундаментальных категорий, неотъемлемо связанную со временем. Это отношение между различными объектами, их взаимоположение, связь в конкретный период времени. Оно является определенностью бытия, характеризующей способ существования материи.

Согласно философии, пространство обладает конкретными свойствами, а именно протяженностью, разнородностью, структурностью, анизотропностью, непрерывностью. Оно постоянно взаимодействует со временем, образуя так называемый хронотоп.

Представление о пространстве: история

Представление о пространстве существовало ещё с древних времен. Тогда оно делилось на разные уровни, образовывая миры богов, человека и духов, будучи многослойным и неоднородным. Первый важный толчок в эволюции этого понятия делает Евклид. При помощи геометрии он объясняет пространство как бесконечное и однородное. Джордано Бруно, изучая небесные тела, выделяет абсолютное и относительное пространство и время.

Среди появляются сторонники евклидовой и неевклидовой геометрии. Возникают теории о кривизне пространства, N-мерных пространствах. Долгий период время и пространство рассматривают по отдельности, считая, что они не влияют на материю.

В XX веке Эйнштейн открывает теорию относительности. Согласно ей, время, пространство и материя взаимосвязаны. Эйнштейн заключает следующее: если из пространства изъять всю материю, то не будет и самого пространства.

Математика

Математическая дисциплина рассматривает пространство через призму логики, однако и она не обходится без участия философии. Основной проблемой здесь является соотношение реальной действительности с миром абстрактных конструкций, которые свойственны математике. Как и везде, эта наука пытается объяснить явление при помощи конкретных расчетов, поэтому для неё пространство - это множество, обладающее структурой.

Математика определяет его как среду, в которой осуществляются различные объекты и предметы. Все сводится к элементарной геометрии, где фигуры (точки) существуют в одной или нескольких плоскостях. В связи с этим появилась необходимость как-то охарактеризовать, измерить пространство. Для этого математиками используются такие характеристики, как длина, масса, скорость, время, объем и т. п.

В математической науке принято выделять такие виды Афинное, Гильбертово, Векторное, Вероятностное, двухмерное, трехмерное и даже восьмимерное. Всего их в математике выделяется не менее 22 типов.

Физика

Если математика пытается перевести всю суть в цифры, то физика старается всё ощутить, потрогать. Тогда она приходит к выводу, что пространство - это некая субстанция, которая не проявляется материально, но может быть чем-то заполнена. Оно бесконечно и неизменно. Это арена для различных процессов и явлений, при этом оно не влияет на них и само не подвергается влиянию.

Физика рассматривает пространство с нескольких точек зрения. Первая определяет его как физическую - трехмерную - величину, где разворачиваются процессы обычного, повседневного мира. Где тела и объекты осуществляют различные перемещения и механические движения.

Второе понимание этого термина переплетается с Это абстрактное пространство. Обычно оно используется для описания и решения задач, связанных с физическим трехмерным миром. Здесь, в отличие от математики, появляются новые его виды, например пространство скоростей, состояний, цветовое пространство.

Фантастические теории

Рассуждения о сути и свойствах пространства привели ученых к продуцированию различных фантастических идей. На основе научных фактов и предположений они постоянно строят новые теории о невероятных возможностях человека.

Одна из таких идей появилась ещё в XVII веке у Иогана Кеплера. Она касается гиперпространства - четырехмерной среды, позволяющей путешествовать сквозь время и расстояние со скоростью, которая превышает скорость света. Другая теория гласит, что вселенная способна расширятся и образовывать «карманы», внутри которых все физические законы теряют силу, а пространство и время могут даже не существовать.

С каждым годом таких, казалось бы, сумасшедших идей рождается всё больше. Однако их объединяет тот факт, что все они находятся на грани науки и фантастики. И никто не знает, какая сторона перевесит у следующей невероятной теории.

Космическое пространство

Понимание пространства различными науками не ограничивается пределами Земли. Учитывая, что физика допускает его бесконечность, можно говорить о значительном расширении границ, например до Вселенной (главная система, совокупность всего, что есть в мире).

Незаполненные никакими телами участки между объектами во Вселенной - это космическое пространство. Оно находится за пределами небесных тел, а значит, и вне Земли и её атмосферы. Однако «космическая пустота» все же чем-то заполнена: она состоит из частиц водорода, межзвездного вещества и электромагнитного излучения.

Казалось бы, если есть объекты, которые не входят в пространство, то можно четко определить его начало. На самом деле сделать это сложно, так как земная атмосфера разрежается постепенно, и границы её значительно размываются. Для разделения атмосферы и космоса международное сообщество приняло условную высоту в 100 километров. Хотя многие астрономы уверены, что космос начинается только на 120 километре от поверхности Земли.

Воздушное и открытое пространство

В отличие от космоса, который не включает в себя земную атмосферу, существуют понятия, связанные с ней напрямую. Например, воздушное пространство. Космос является термином многогранным. Он неоднозначен и фигурирует в физике, философии, культуре. Воздушное пространство по большей части относится к праву и географии. Это часть атмосферы нашей планеты, а её границы регулируются международным правом.

Термин «открытое пространство» - по сути, то же самое. Это территория, не принадлежащая ни одной стране. Она расположена за границей территориальных вод прибрежных государств и является международной собственностью, доступной всем.

Религия

Пространство является одним из главных вопросов любых религиозных верований, которые наделяют его несколько иным значением. Обычно оно имеет четкую вертикальную структуру, которая определяется иерархией компонентов (от высшего мира к нижнему).

Религиозные верования порождают понятие сакрального пространства, т. е. такого, которое непрерывно испытывает действие высших сил. В данном случае под священным влиянием оно способно преображаться и качественно отличатся от остального пространства.

Заключение

Пространство - это сложное и многогранное понятие, суть которого беспокоит ученых и мистиков не одну сотню лет. Есть огромное количество схожих и абсолютно противоположных точек зрения, определяющих данное понятие. Все они сходятся в том, что пространство является средой, ареной, площадкой для осуществления различных форм и процессов. Структура и свойства этой среды до сих пор являются поводом для горячих научных дискуссий.

Министерство науки, высшей школы и технической политики

Российской федерации

Саратовский ордена трудового красного знамени государственный

университет им. Н. Г. Чернышевского

РЕФЕРАТ ПО ФИЛОСОФИИ

соискателя звания к.ф.-м.н.

инженера кафедры физики твёрдого тела

Бабаяна Андрея Владимировича.

Тема: Пространство и время в физике.

г.Саратов - 1994 г.


ВВЕДЕНИЕ 2

1. Развитие пространственно-временных представлений

в классической механике 3

2. Пространство и время в теории относительности

Альберта Эйнштейна 8

2.1. Специальная теория относительности 8

2.2. Пространство и время в общей теории

относительности и релятивистской

космологии 10

3. Пространство и время в физике микромира 15

3.1. Пространственно-временные представления

квантовой механики 15

3.2. Прерывность и непрерывность пространства и

времени в физике микромира 18

3.3. Проблема макроскопичности пространства и

времени в микромире 20

ЗАКЛЮЧЕНИЕ 23

ЛИТЕРАТУРА 24


ВВЕДЕНИЕ.

Диалектический материализм исходит из того, что "в мире

нет ничего, кроме движущейся материи, и движущаяся материя не

может двигаться иначе, как в пространстве и во времени"(*).

Пространство и время, следовательно, выступают фундаментальными

формами существования материи. Классическая физика

рассматривала пространственно - временной континуум как

универсальную арену динамики физических объектов. Однако

развитие неклассической физики (физики элементарных частиц,

квантовой физики и др.) выдвинуло новые представления о

пространстве и времени. Оказалось, что эти категории неразрывно

связаны между собой. Возникли разные концепции: согласно одним,

в мире вообще ничего нет, кроме пустого искривленного

пространства, а физические объекты являются только проявлениями

этого пространства. Согласно другим, пространство и время

присущи лишь макроскопическим объектам.

Как видно, современная физика настолько разрослась и

потеряла единство, что в ее различных разделах существуют прямо

противоположные утверждения о природе и статусе пространства и

времени. Этот факт требует тщательного исследования, так как

может показаться, что представления современной физики

противоречат фундаментальным положениям диалектического

материализма.

Правда, следует отметить, что в современной физике речь

идет о пространстве и времени как о физических понятиях, как о

конкретных математических структурах, наделенных

соответствующими семантическими и эмпирическими интерпретациями

в рамках оределённых теорий, и что выяснение макроскопичности

подобных структур не имеет прямого отношения к положению

диалектического материализма об универсальности пространства и

времени, так как в этом речь идет уже о философских категориях.

Начинать исследование целесообразно с представлений

античной натурфилософии, анализируя затем весь процесс развития

пространственно - временных представлений вплоть до наших дней.

ДДДДДДДДД

(*) Ленин В.И. ПСС, т. 18, с. 181.


1. РАЗВИТИЕ ПРОСТРАНСТВЕННО - ВРЕМЕННЫХ

ПРЕДСТАВЛЕНИЙ В КЛАССИЧЕСКОЙ ФИЗИКЕ.

В анализе античных доктрин о пространстве и времени

остановимся на двух: атомизме Демокрита и системе Аристотеля.

Атомистическая доктрина была развита материалистами

Древней Греции Левкиппом и Демокритом. Согласно этой доктрины,

всё природное многообразие состоит из мельчайших частичек

материи (атомов), которые двигаются, сталкиваются и

сочетаются в пустом пространстве. Атомы (бытие) и пустота (

небытие) являются первоначалами мира. Атомы не возникают и не

уничтожаются, их вечность проистекает из безначальности

времени. Атомы двигаются в пустоте бесконечное время.

Бесконечному пространству соответствует бесконечное время.

Сторонники этой концепции полагали, что атомы физически

неделимы в силу плотности и отсутствия в них пустоты. Множество

атомов, которые не разделяются пустотой, превращаются в один

большой атом, исчерпывающий собой мир.

Сама же концепция была основана на атомах, которые в

сочетании с пустотой образуют всё содержание реального мира. В

основе этих атомов лежат амеры (пространственный минимум

материи). Отсутствие у амеров частей служит критерием

математической неделимости. Атомы не распадаются на амеры, а

последние не существуют в свободном состоянии. Это совпадает с

представлениями современной физики о кварках.

Характеризуя систему Демокрита как теотию структурных

уровней материи - физического (атомы и пустота) и

математического (амеры), мы сталкиваемся с двумя

пространствами: непрерывное физическое пространство как

вместилище и математическое пространство, основанное на амерах

как масштабных единицах протяжения материи.

В соответствии с атомистической концепцией пространства

Демокрит решал вопросы о природе времени и движения. В

дальнейшем они были развиты Эпикуром в систему. Эпикур

рассмотривал свойства механического движения исходя из

дискретного характера пространства и времени. Например,

свойство изотахии заключается в том, что все атомы движутся с

одинаковой скоростью. На математическом уровне суть изотахии

состоит в том, что в процессе перемещения атомы проходят один

"атом" пространства за один "атом" времени.

Таким образом, древнегреческие атомисты различали два типа

пространства и времени. В их представлениях были реализованы


субстанциальная и атрибутивная концепции.

Аристотель начинает анализ с общего вопроса о

существовании времени, затем трансформирует его в вопрос о

существовании делимого времени. Дальнейший анализ времени

ведётся Аристотелем уже на физическом уровне, где основное

внимание он уделяет взаимосвязи времени и движения. Аристотель

показывает. что время немыслимо, не существует без движения, но

оно не есть и само движение.

В такой модели времени реализована реляционная концепция.

Измерить время и выбрать единицы его измерения можно с помощью

любого периодического движения, но, для того чтобы полученная

величина была универсальной, необходимо использовать движение с

максимальной скоростью. В современной физике это скорость

света, в античной и средневековой философии - скорость движения

небесной сферы.

Пространство для Аристотеля выступает в качестве некоего

отношения предметов материального мира, оно понимается как

Механика Аристотеля функционировала лишь в его модели

мира. Она была построена на очевидных явлениях земного мира. Но

это лишь один из уровней космоса Аристотеля. Его

космологическая модель функционировала в конечном неоднородном

пространстве, центр которого совпадал с центром Земли. Космос

был разделен на земной и небесный уровни. Земной состоит из

четырёх стихий - земли, воды, воздуха и огня; небесный - из

эфирных тел, пребывающих в бесконечном круговом движении.

Эта модель просуществовала около двух тысячелетий.

Однако в системе Аристотеля были и другие положения,

которые оказались более жизнеспособными и во многом определили

развитие науки вплоть до настоящего времени. Речь идёт о

логическом учении Аристотеля на основе которого были

разработаны первые научные теории, в частности геометрия

В геометрии Евклида наряду с определениями и аксиомами

встечаются и постулаты, что свойственно больше физике, чем

арифметике. В постулатах сформулированы те задачи, которые

считались решёнными. В таком подходе представлена модель

теории, которая работает и сегодня: аксиоматическая система и

эмпирический базис связываются операционными правилами.

Геометрия Евклида является первой логической системой понятий,

трактующих поведение каких-то природных объектов. Огромной

заслугой Евклида является выбор в качестве объектов теории


твёрдого тела и световых лучей.

Г.Галилей вскрыл несостоятельность аристотелевской картины

мира как в эмпирическом, так и в теоретико-логическом плане. С

помощью телескопа он наглядно показал насколько глубоки были

революционные представления Н. Коперника, который развил

гелиоцентрическую модель мира. Первым шагом развития теории

1. Каждая планета движется по эллипсу, в одном из фокусов

которого находится Солнце.

2. Площадь сектора орбиты, описуваемая радиус-вектором планеты,

изменяется пропорционально времени.

3. Квадраты времён обращения планет вокруг Солнца относятся как

кубы их средних расстояний от Солнца.

Галилей, Декарт и Ньютон рассматривали различные сочетания

концепций пространства и инерции: у Галилея признаётся пустое

пространство и круговое инерциальное движение, Декарт дошёл до

идеи прямолинейного инерциального движения, но отрицал пустое

пространство, и только Ньютон объединил пустое пространство и

прямолинейное инерциальное движение.

Для Декарта не характерен осознанный и систематический

учёт относительности движения. Его представления ограничены

рамками геометризации физических объектов, ему чужда

ньютоновская трактовка массы как инерциального сопротивления

изменению. Для Ньютона же характерна динамическая трактовка

массы, и в его системе это понятие сыграло основопологающую

роль. Тело сохраняет для Декарта состояние движения или покоя,

ибо это требуется неизменностью божества. То же самое

достоверно для Ньютона вследствие массы тела.

Понятия пространства и времени вводятся Ньютоном на

В 1921 году в статье “Геометрия и опыт” А. Эйнштейн писал:

“Гравитационное поле обладает такими свойствами, как если бы кроме весомых масс оно создавалось равномерно распределенной в пространстве плотностью массы, имеющей отрицательный знак. Так как эта фиктивная масса очень мала, то ее можно заметить только в случае очень больших гравирующих систем”.

Причем, наиболее естественным количественным соотношением между компонентами с противоположными свойствами является равенство абсолютных значений плотностей. Тогда средняя плотность Вселенной будет равна нулю и не возникает проблемы о происхождении и количестве материи. В современной физике проблема обоснования существования материи в частности, и Вселенной в целом, вообще не рассматривается. Во-вторых - если распространение света связать с распространением возмущений в фиктивной массе, то, очевидно, что ограниченность скорости света является не свойством геометрии пространства, а характеристикой фиктивной массы. А так как в любой физической среде распространение возмущений, которое описывается волновыми уравнениями, слабо зависит от течения, которое удовлетворяет уравнениям движения, то очевиден отрицательный результат опытов Майкельсона-Морли по обнаружению “эфирного ветра”.

Течение “эфира” не может существенно изменить характер и скорость распространения волн плотности в ней. В-третьих - поток любой среды (например, воздуха, воды) оказывает на материальные тела давление пропорциональное плотности. В том случае, когда плотность среды отрицательная, это давление превращается в силу, направленную против течения. Следовательно, если материальное тело может излучать среду с отрицательной плотностью, то она будет оказывать гравитационное воздействие на окружающие тела. Таким образом, идея о фиктивной массе позволяет более естественно объяснять некоторые известные физические явления и эксперименты. Для того, чтобы охватить все явления, очевидно, необходимо построить модель Вселенной с фиктивной массой, которая опирается на минимальный набор гипотез.

Такая модель далее называется теорией физического пространства (ТФП). Понятно, что в этой теории речь идет уже не о фиктивной массе, а о реальной среде, которая не просто заполняет, а составляет окружающее нас пространство . Основу модели физического пространства составляют две дополняющие друг друга гипотезы, смысл которых состоит в обеспечении образования и сохранения материи без привлечения неопределенной энергии и третьих сил. Гипотеза симметрии: В пространстве существуют только две среды, одна из которых имеет положительную плотность и называется материей, а другая имеет отрицательную плотность и называется физическим пространством. Эти среды состоят из неделимых частиц, которые образуются и исчезают (аннигилируют) парами.

В настоящей модели, где материя существует только на волнах физического пространства, под пустотой понимается ограниченная область в пространстве, где нет ни материи, ни физического пространства. Пустота неустойчива в том смысле, что на ее поверхности, граничащей с окружающим физическим пространством, всегда происходит волновой процесс образования материи и физического пространства. Т.е. пустота постоянно “выгорает” подобно любому другому топливу и является .

Образование пустоты связано с аннигиляцией материи и физического пространства, т.е. с поглощением энергии, которая переходит в потенциальную энергию пустоты. Причем, чем больше аннигилирующие массы, тем больше образующийся объем пустоты. Типичным примером пустоты является шаровая молния, которая образуется при столкновениях разнозаряженных частиц и постепенно “выгорает” по поверхности.

Более интенсивно этот процесс происходит в обычной молнии. Другой способ образования пустоты – это гравитационный коллапс звезд. В этом случае материя вырождается и распадается на неделимые частицы в результате критического давления, т.е. давления, при котором материя теряет способность к движению и распадается. При аннигиляции с внутренним пространством происходит образование пустоты. Как только пустота достигает поверхности звезды запускается обратный процесс образования материи и пространства, что наблюдается как взрыв сверхновой. Наиболее близким к декларируемой пустоте теоретическим астрофизическим объектом является белая дыра, в область которой по определению не может проникнуть ничто. Израильский астроном Алон Реттер считает, что белые дыры, возникнув, сразу распадаются, процесс напоминает Большой взрыв (Big Bang), поэтому и называется, по аналогии, Малый взрыв (Small Bang).

Отличие в представлении теории физического пространства состоит в том, что изначально происходит процесс поглощения материи в некоторой области пространства по примеру черной дыры, которая потом преобразуется в белую дыру и воспроизводит материю в том же количестве, что и было поглощено. Только это будут уже другие звезды и другие галактики. Из гипотез модели следует, что материя во всех ее проявлениях существует в физическом пространстве. Свободные и вынужденные колебания, излучение и течение физического пространства объясняют такие явления, как свет, атом, магнетизм, инерция, гравитация, «скрытая» масса, и др. По этому поводу Эйнштейн писал, что

“требование сведения явлений к физическим причинам выдвигаются пока еще недостаточно требовательно и будущим поколениям эта нетребовательность покажется непонятной”.
Применение теории физического пространства к трактовке различных явлений реального мира является увлекательным занятием, как и всё новое. Но в ограниченном объеме публикации это можно продемонстрировать только на примерах, в которых проявляются различные свойства физического пространства.

Микромир

Из волнового характера процесса “горения” пустоты, когда на поверхности одновременно образуются элементарные частицы и возбуждаются волны колебания плотности физического пространства, следует, что известная корпускулярно-волновая природа элементарных частиц не является выбором между волной и частицей, а представляет собой движение частиц одной среды (материи) на волнах другой среды (физического пространства). Причем, длина волны количественно характеризует элементарную частицу, т.к. она ограничивает ее размеры. Разным длинам волн в пространстве соответствуют разные частицы. Распространение элементарных частиц в пространстве со скоростью света означает, что скорость света - это скорость распространения возмущений в физическом пространстве.

Волны в физическом пространстве могут возбуждаться и другими способами. Например, вращением материальных тел, но это не приводит к распространению излучения, т.к. отсутствует источник излучения или процесс “горения” пустоты. Природа вынужденных колебаний физического пространства, сложна и многообразна. Здесь возможны радиальные, тангенциальные, спиральные волны и их наложения, вихри и т.д. Вопрос только в том, какому реальному физическому процессу соответствуют эти явления? Очевидно, что вынужденные колебания физического пространства можно связать с магнитным полем (радиальные волны), структурой атома (наложение спиральных волн), электрическими зарядами (вихри) и т.д. Не вдаваясь в подробности, можно утверждать, что в модель Вселенной с физическим пространством гармонично вписываются различные явления микромира.

Мир

Из всех явлений реального мира наиболее таинственной до сих пор остается гравитация . Вопрос о том, почему подброшенный камень падает на землю, занимает человечество на всем протяжении своего существования и не имеет однозначного ответа до сих пор. Гравитация также является пробным камнем для различных альтернативных моделей Вселенной, в которых никогда не было недостатка. И, несмотря на то, что многие физические явления в этих моделях становятся более простыми и понятными, авторы сознательно обходят толкование гравитации.

Это в полной мере относится и к современной физике. Объяснение гравитации воздействием потока физического пространства не является тривиальным, но может быть последовательно осуществлено, исходя из свойств микромира. Во-первых, почему все материальные тела излучают физическое пространство ? Излучение материи материальными телами известно, т.к. почти вся информация о материальных телах основана на регистрации излучения материи.

Но если в модели образование материи и физического пространства происходит в равных количествах, то, очевидно, что тела излучают и физическое пространство. Кстати, образующееся избыточное физическое пространство проясняет и сам факт расширения Вселенной. Во-вторых, если связывать величину гравитации со скоростью потока физического пространства , то необходимо объяснить, почему она не зависит от скорости самого тела? Или, почему тела могут двигаться с постоянной скоростью относительно физического пространства, т.е. по инерции?

Действительно, при взаимодействии тела, движущегося с постоянной скоростью, с любым внешним потоком, в том числе и с отрицательной плотностью, оно должно изменять скорость. Но поток физического пространства не является чисто внешним по отношению к телу, т.к. физическое пространство излучается и самим телом. Величина и направление этого 6 излучения изменяют характер движения. Для того чтобы привести в движение покоящееся тело, необходимо затратить энергию.

В данном случае энергия расходуется на изменение направления потока физического пространства внутри тела. Т.е. собственное выделение физического пространства является для тела движущей реактивной силой, которая нейтрализует воздействие внешнего потока при движении по инерции. Само же изменение направления потока физического пространства в теле может происходить в результате изменения внутренней структуры атомов, ее симметрии, например, эллиптичности орбит электронов.

Таким образом, инерционное движение тела происходит с фиксированной внутренней структурой ее атомов, а при воздействии внешних сил изменяются структура и скорость относительно окружающей антиматерии. Следовательно, изменение скорости внешнего потока также равнозначно приложению внешней силы. Это следствие решает проблему эквивалентности гравитационной и инертной масс тела. Известно, что скорость физического пространства от центрального источника уменьшается пропорционально квадрату расстояния, т.е. так же, как и сила притяжения. И то, что называется гравитационным полем, оказывается полем скоростей течения физического пространства от множества источников, которыми являются звезды, планеты и др. материальные тела .

Макромир

Влияние физического пространства на движение материи имеет три существенно отличающихся уровня, которые имеют и различное математическое описание. На уровне элементарных частиц это влияние описывается волновыми уравнениями для физического пространства, т.к. движение элементарных частиц сопровождается распространением волн плотности в физическом пространстве . Механика Ньютона, дополненная силами гравитации, эквивалентными полю скоростей течения физического пространства, является приближенным методом для исследования движения материальных тел в физическом пространстве.

Третий уровень влияния физического пространства на движение материи отличается тем, что здесь уже расстояния между галактиками таковы, что определяющая роль в их движении принадлежит течению идеальной среды, каковой является физическое пространство. Направление гравитационной силы в каждой точке пространства совпадает с направлением течения физического пространства, что не соответствует положениям классической механики о том, что гравитационная сила всегда направлена в сторону притягивающего центра. Отклонение течения физического пространства от радиального направления происходит вследствие вращения источника и оказывает, в частности, заметное влияние на движение материи вокруг звезд и ядер галактик.

Однако, эти материальные образования имеют различное внутреннее строение, в результате, физическое пространство ядра галактики вращается вместе с ним и отклонение течения физического пространства от радиального нарастает при удалении от центра, а для звезды наоборот, с приближением к поверхности физическое пространство увлекается вращающейся массой материи. Вращение физического пространства вместе с ядром галактики. Этим и обусловлено незатухающее движение материи при удалении от ядра галактики, которое трактуется в современной космологии как влияние “скрытой массы”, и ускоренное движение материи с приближением к поверхности звезды, примером которого является смещение перигелиев планет солнечной системы .

В чем проблема гипотезы о темной материи?

Тезис о существовании темной материи основан на расхождении наблюдаемых данных от теоретических кривых из уравнений движения Кеплера . Но что означает расхождение между кривыми, описывающими один и тот же физический процесс, если это расхождение заключается в стремлении экспериментальных кривых не к нулю, а к какой-то другой асимптоте, может даже и не горизонтальной. Это может означать не только существование темной материи, но и отсутствие соответствия между физическим процессом и уравнениями, с помощью которых мы пытаемся его описать.

Проблема в том, что мы рассматриваем движение материи вокруг галактики в едином геометрическом пространстве от центра ядра галактики и до бесконечности, тогда как физическое пространство галактики вращается вместе с ней относительно всего остального окружающего пространства. Это обстоятельство никак не учитывается в используемых уравнениях движения, что и приводить к противоречиям, для объяснения которых приходится вводить мифическую темную материю. Физическое прсотранство из-за отрицательной плотности постоянно находится в условиях однородного сжатия В любом ограниченном объеме это невозможно, потому что давление и плотность на границе равны нулю. Поэтому можно утверждать, что в теории физического пространства Вселенная является неограниченной. Более того, ограниченность Вселенной означала бы, что ее границей является пустота и по всей границе происходит непрерывный процесс образования материи и физического пространства, т.е. излучение от границы намного превосходило бы излучение от всей материи внутри Вселенной.

Альтернативой Большому взрыву или причиной расширения в теории физического пространства являются местные аннигиляции больших объемов материи и физического пространства, в частности, взрывы сверхновых звезд. Учитывая, что объём образующейся пустоты значительно меньше эквивалентного объема физического пространства, при взрывах происходит местное сжатие Вселенной. Таким образом, медленное и всеобщее расширение Вселенной сопровождается быстрыми местными сжатиями. Образующийся при этом ограниченный объём пустоты в результате деления на множество более мелких пустот и их “горения” вновь превращается в галактику. Известно же, что взрывы сверхновых сопровождаются образованием звездных систем и туманностей. Экспериментально связь между взрывами сверхновых и сжатиями пространства не исследовалась, возможно по той причине, что нет теории, которая предсказывала бы такую связь. Но странные траектории движения огромных масс, которые никак не вписываются в парадигму ускоренного расширения Вселенной, могут быть объяснены, в том числе, местными сжатиями пространства.

«Столкновение Млечного Пути и галактики Андромеды (M31), двух крупнейших галактик в Местной группе, как предполагают, случится приблизительно через четыре миллиарда лет».

В современной космологии возможность этого столкновения списывают на гравитационное взаимодействие. Это очень странное предположение, если учесть, что более 20 галактик местной группы находятся значительно ближе к нам (чем М31) и не угрожают столкновением. Одной из проблем современной физики является сомнительность объяснения образования звезд, планет и т.д . Большим взрывом, тогда как равномерно распределенная в пространстве протоматерия находится в состоянии расширения, т.е. уменьшения плотности и притяжения между частицами, что никак не может способствовать их объединению. Кроме того, образование звезд и планет в разных областях Вселенной происходит и в настоящее время, когда текущее состояние космоса значительно отличается от периода звездообразования после Большого взрыва.

В теории физического пространства материя образуется на поверхности ограниченного объема пустоты и находится в состоянии постоянного притяжения к ее центру. В этом процессе можно выделить две стадии: первая - это деление исходной пустоты образовавшейся в результате крупномасштабной аннигиляции, когда “осколки” удаляются друг от друга под действием сил отталкивания образующимся физическим пространством. И вторая - это превращение “осколков” в сферы путем отделения выступающихся частей. Так как эти стадии разнесены во времени, на “осколках” уже имеется поверхностный слой материи, и на отделяющиеся части действуют не только силы отталкивания, но и силы притяжения к исходному ядру, которые превращают их в естественные спутники. В реальном мире с этими стадиями связано образование звездной системы галактики (первая стадия) и образование планетных систем (вторая стадия). Доклад академика В.A. Амбарцумяна на Общем собрании Академии наук СССР при вручении ему медали им. М.В. Ломоносова.

Вестник Академии Наук СССР, 1972, №5:

«Не оставалось ничего другого, как, отбросив ни на чем не основа­нные, предвзятые представления о сгущении рассеянного вещества в звезды, просто экстраполируя наблюдательные данные, выдвинуть диаметрально противоположную гипотезу о том, что звезды возникают из плотного, скорее сверхплотного вещества, путем разделения (фрагментации) массивных дозвездных тел на отдельные куски».

Заключение

Очевидно, что введение физического пространства в корне изменяет представление о Вселенной. Между тем, в специальной и научно-популярной литературе современные основы физики не подвергаются сомнению. Утверждение о том, что материя бесконечна “и вширь и вглубь” является весомым аргументом в пользу бесконечности процесса познания. Но если предположить, что теория физического пространства верна, то, очевидно, что в больших масштабах Вселенная квазипериодична, т.е. ничего нового увидеть уже не удастся, а при выделении малых объемов материя просто исчезает. Методологическая проблема современной физики, как это следует из модели физического пространства, состоит в том, что Вселенная в больших масштабах не является предметом динамики материальных тел (или точек) в пустом пространстве, а должна исследоваться методами механики течения идеальной сплошной среды, каковой является физическое пространство, с дискретными включениями материальных тел. Утверждение теории физического пространства возможно только тогда, когда она станет предметом обсуждения в научных кругах, а ее преимущества будут подкреплены существенными результатами в освоении белых пятен, которых немало в окружающем мире.

Следует отметить, что теория физического пространства не противоречит никаким известным данным экспериментальной физики, последовательно и без сингулярностей описывает разные уровни организации материи. От всех других моделей Вселенной, в том числе и от модели Большого взрыва, теория физического пространства отличается простотой, которая свойственна природе и является одним из критериев истинности. Неизбежность такого упрощения предполагает выдающийся английский физик Стивен Хокинг, когда пишет: “Если мы действительно откроем полную теорию, то со временем ее основные принципы будут доступны пониманию каждого, а не только нескольким специалистам”.

Понятия пространства и времени, выработанные в классической физике, являются результатом теоретического анализа механического движения.

В главной работе И.Ньютона «Математические начала натуральной философии», изданной в 1687 г., были сформулированы основные законы движения и дано определение понятий пространства и времени.

Понятия «пространство» и «время» были определены И. Ньютоном в строгом соответствии с той методологической установкой, которая была принята формирующейся опытной наукой Нового Времени, а именно, познание сущности (законов природы) через явления. Он писал: «Время, пространство, место и движение составляют понятия общеизвестные. Однако необходимо заметить, что эти понятия обыкновенно относят к тому, что постигается нашими чувствами. Отсюда происходят некоторые неправильные суждения, для устранения которых необходимо вышеприведённые понятия разделить на абсолютные и относительные, истинные и кажущиеся, математические и обыденные».

Ньютон чётко различал два типа времени и пространства – абсолютное и относительное, и дал им следующие определения:

«Абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.

«Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год.

«Абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.

«Относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное».

Чем вызвано это различение?

Прежде всего, оно связано с особенностями теоретического и эмпирического уровней познания пространства и времени.

На теоретическом уровне пространство и время представляют собой идеализированные объекты, у которых выделяется только одна характеристика: для времени – быть «чистой длительностью», а для пространства быть «чистой протяженностью».

На эмпирическом уровне пространство и время предстают как относительные, то есть, связанные с конкретными физическими процессами и их восприятием на уровне чувств.

Таким образом, и для времени, и для пространства термин «относительный» использовался в смысле «измеряемая величина» (постигаемая нашими чувствами), а «абсолютный» - в смысле «математическая модель».

Почему Ньютон ввел разграничение теоретического и эмпирического смысла этих понятий?

Соотношение между понятиями абсолютного и относительного времени и необходимость в них ясно видна из следующего пояснения.

Время, как известно, можно измерить при помощи равномерного периодического процесса. Однако, мы знаем, что процессы равномерны? Очевидны логические трудности в определении подобных первичных понятий.

Другая трудность связана с тем, что два одинаково равномерных на данном уровне точности процесса могут оказаться относительно неравномерными при более точном измерении. И мы постоянно оказываемся перед необходимостью выбора все более надежного эталона равномерности хода времени.

Абсолютное время различается в астрономии от обыденного солнечного времени уравнением времени. Ибо естественные солнечные сутки, принимаемые при обыденном измерении времени как равные, на самом деле между собою неравны. Это неравенство и исправляется астрономами, чтобы при измерениях движений небесных светил применять более правильное время. Возможно, что не существует (в природе) такого равномерного движения, которым время могло бы измеряться с совершенною точностью. Все движения могут ускоряться или замедляться, течение же абсолютного времени изменяться не может.

Таким образом, относительное время Ньютона есть время измеряемое, тогда как время абсолютное есть его математическая модель со свойствами, выводимыми из относительного времени при помощи абстрагирования.

Перейдём к понятию абсолютного пространства.

Важную роль в развитии естествознания сыграл принцип относительности для механического движения, впервые установленный Г.Галилеем и окончательно сформулированный в механике Ньютоном.

Отцом принципа относительности считается Галилео Галилей, который обратил внимание на то, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. Во времена Галилея люди имели дело в основном с чисто механическими явлениями. В своей книге «Диалоги о двух системах мира» Галилей сформулировал принцип относительности следующим образом: для предметов, захваченных равномерным движением, это последнее как бы не существует, и проявляет своё действие только на вещах, не принимающих в нём участия.

Идеи Галилея нашли развитие в механике Ньютона, который дал научную формулировку принципа относительности: относительные движения тел друг по отношению к другу, заключенные в каком-либо пространстве, одинаковы, покоится ли это пространство, или движется равномерно и прямолинейно без вращения.



Другими словами, согласно принципу относительности Галилея, законы механики инвариантны, то есть остаются неизменными при тех или иных преобразованиях относительно инерциальных систем отсчёта. Переход от одной инерциальной системы отсчёта к другой осуществляется на основе так называемых преобразований Галилея, где х, у и z означают координаты тела, v – скорость, а t – время:

Смысл принципа относительности заключается в том, что во всех инерциальных системах отсчёта законы классической механики имеют одинаковую математическую форму записи.

В период создания механики перед Ньютоном неизбежно вставал вопрос: а существуют ли вообще инерциальные системы? Если существует хотя бы одна такая система, то может существовать бесчисленное их множество, ибо любая система, движущаяся равномерно и прямолинейно относительно данной, тоже будет инерциальной. Совершенно очевидно, что в природе инерциальных систем отсчёта нет. На Земле с достаточной степенью точности соблюдается принцип инерции, и тем не менее Земля - система неинерциальная: она вращается вокруг Солнца и вокруг собственной оси. Не может быть инерциальной и система, связанная с Солнцем, ибо Солнце вращается вокруг центра Галактики. Но если, ни одна реальная система отсчета не является строго инерциальной, то не оказываются ли фикцией основные законы механики?

Поиски ответа на этот вопрос привели к понятию абсолютного пространства. Оно представлялось совершенно неподвижным, а связанная с ним система отсчета - инерциальной. Предполагалось, что по отношению к абсолютному пространству законы механики выполняются строгим образом.

В преобразованиях Галилея отражены основные свойства пространства и времени, как они понимались в классической механике.

Каковы же эти свойства?

1. Пространство и время существуют как самостоятельные сущности, не связанные друг с другом.

Пространственные и временные координаты входят в уравнения неравноправным образом. Пространственная координата в движущейся системе зависит и от пространственной и от временной координаты в неподвижной системе (х"= х – vt). Временная же координата в движущейся системе зависит только от временной координаты в неподвижной и никак не связана с пространственными координатами (t" = t).

Таким образом, время мыслится как нечто совершенно самостоятельное по отношению к пространству.

2. Абсолютность пространства и времени, то есть абсолютный характер длины и временных интервалов, а также абсолютный характер одновременности событий.

Основными метрическими характеристиками пространства и времени являются расстояние между двумя точками в пространстве (длина) и расстояние между двумя событиями во времени (промежуток). В преобразованиях Галилея зафиксирован абсолютный характер длины и промежутка. В отношении временного промежутка это непосредственно видно из уравнения t" = t. Время не зависит от системы отсчета, оно одно и то же во всех системах, везде и всюду течет совершенно равномерно и одинаково.

Таким образом, во всех инерциальных системах отсчёта равномерно течёт единое непрерывное абсолютное время и осуществляется абсолютный синхронизм (т. е. одновременность событий не зависит от системы отсчёта, она абсолютна), основой которого могли выступать лишь дальнодействующие мгновенные силы - эта роль в системе Ньютона отводилась тяготению (закон всемирного тяготения). Однако статус дальнодействия определяется не природой гравитации, а самой субстанциальной природой пространства и времени в рамках механистической картины мира.

В классической механике Ньютона пространство вводится посредством евклидовой трехмерной геометрии. В силу этого оно непрерывно, упорядочено, трехмерно, бесконечно, безгранично - это трехмерный континуум точек.

Ньютоновская концепция пространства и времени и принцип относительности Галилея, на основе которых строилась физическая картина мира, господствовали вплоть до конца XIX в.

Мы уже рассмотрели, что времени, как физической сущности нет (Что такое время? (попытка определения) fornit.ru/17952 ). Есть только физические процессы с причинами и следствиями. Отношение числа некоторых событий в исследуемом процессе к числу стандартных событий в стандартном процессе, случившихся между двумя «сейчас», определяет измеряемую величину, которую называют время.

А что с пространством?

Что такое пространство, не в смысл е математической абстракции, а физическое пространство, которое нас окружает?

В интернете есть множество статей с рассуждениями на эту тему, и теор ий с утверждениями. Пространству приписывают физические свойства, его заменяют эфиром, физическим вакуумом, ставят в оппозицию перед материей, объединяют со временем, превращая в пространственно-временной континуум. Но все согласны в одном - пространство заполнено материей и бесконечно.
Если согласиться с таким утверждением, приходится согласиться с тем, что пространство не материально.

В гипотез е «Общая теор ия пространства» (fornit.ru/17928 ) пространство рассматривается неотрывно от материи, и считается свойством материи.
Материя в современном понимании тоже не имеет чёткого определения, но по общему соглашению материей считается всё, что существует независимо от сознания, объективно.
Рассматривая пространство, как свойство материи, можно говорить о его материальности. Но оно не существует само по себе, а является свойством того, что существует объективно.
Как такое представление связать с имеющимися наблюдательными и чувственными фактами?
В каком «свойстве» наблюдается перемещение галактик и космических аппаратов?

В гипотез е «Общая теор ия пространства» этим свойством обладает вся материя. Сама материя подразделяется на имеющую массу (тоже свойство) и безмассовую.
В физике для описания свойств материи применяется понятие материальной точки, которая может иметь массу, или обозначает некоторый пункт в пространстве.
Но справедлива ли по отношению к материи такая абстракция, как материальная точка?
Всё, что существует объективно, имеет какое-то устройство. Говоря о планетах или частицах, говорят о присущим им внешним полям и внутренней структуре. И это касается всех без исключения материальных объектов.
В таком случае, принимая некоторую абстрактную форму для материи можно наделить её внешней сферой, граничной поверхностью и внутренней сферой. Назовём эту форму объектом.
Что ограничивает граничная сфера? Она находится на границе внешнего и внутреннего пространства объекта.

Электроны представляются, как объекты, имеющие электрический заряд, обнаруживаемый по взаимодействию электрического поля этого электрона с другими объектами. Планеты представляются, как объекты, имеющие массу (гравитационный заряд), обнаруживаемый по взаимодействию гравитационного поля с другими объектами.

А что такое электрическое и гравитационное поле?
Эти поля не существуют сами по себе, а являются свойствами материи.
Почему бы тогда не сказать, что электрическое и гравитационное поле это параметры физического пространства объекта?
Гравитационные свойства наблюдаются в масштабах всей Вселенной, а электрические в некоторых ограниченных областях, поскольку есть два вида электрических зарядов, действие которых компенсируются на больших расстояниях от них.
Можно задать вопрос, а почему гравитационный заряд имеет только положительную величину?
«Общая теор ия пространства» даёт такой ответ. Гравитационный заряд может иметь отрицательную величину, но в условиях нашей Вселенной он не может существовать. Виной тому общий гравитационный потенциал всей материи Вселенной. Оказывается, что именно в таких условиях одноимённые гравитационные заряды начинают притягиваться, а разноимённые отталкиваться. По какой-то случайности положительных оказалось несколько больше, и отрицательные покинули наблюдаемое пространство Вселенной.

А что же это за наблюдаемое пространство?
А это сумма всех индивидуальных пространств объектов Вселенной, которые обладают положительным гравитационным параметром.
Пространство объекта, как его свойство, обладает целым рядом параметров, куда входят электрические и гравитационные параметры.
Взаимодействие объектов в таком представлении связано с давлением, которое неоднородное пространство может оказывать на объект, имеющий некоторую площадь сечения. Обратите внимание на то, что на материальную точку давление не может оказываться.
Таким образом, нет независимого бесконечного пространства. Пространства столько, сколько есть материи во Вселенной.
Объективно нет и точек (пунктов) в пространстве. Для определения свойств пространства можно рассматривать некоторую малую область. Пробное тело (пробный объект) позволяет оценить его взаимодействие с окружающим (суммарным) пространством. Взаимодействие происходит между внешним пространством одного объекта и внутренним другого. Если объекты имеют приблизительно равные параметры, то для вычисления взаимодействия необходимо рассматривать внутренние и внешние пространства обоих объектов.
Деление на внешнее и внутреннее достаточно условно. Внешнее пространство для объектов Вселенной одновременно внутреннее пространство всей видимой Вселенной, как объекта. Солнечная система может рассматриваться как объект имеющий внешнее пространство за пределами различимого влияния отдельных планет. Внешнее и внутреннее пространство это абстракции, которые позволяют ближе подойти к реальному устройству мира, чем бесконечное пространство и материальные точки.
Можем теперь дать определение физического пространства.

Пространство это свойство материальных объектов, определяющее их взаимодействие.

Это определение избавляет от необходимости определять термин поле. Всё, что можно было сказать о поле, можно говорить о пространстве (точнее о его параметрах).
Как ни странно, такое представление не усложняет математику, описывающую реальность, а иногда и упрощает. Движение и координаты объектов всегда определяются в контекст е взаимодействия существующего или потенциал ьного.

Нет необходимости сжимать, искривлять физическое пространство. Все процессы в нём и с ним описываются его параметрами.

"...требование сведения метрического и инерциального по-ля к физическим причинам выдвигается пока еще недостаточно настойчи-во... Будущим поколениям, однако, эта нетребовательность покажется непонятной".
А. Эйнштейн, ЗАМЕЧАНИЕ К РАБОТЕ ФРАНЦА СЕЛЕТИ „К КОСМОЛОГИЧЕСКОЙ СИСТЕМЕ“ 1922 г.

Пора, думаю, более требовательно сводить эти явления к физическим причинам:)