Методы и технические средства дефектоскопии материала деталей машин и элементов и металлоконструкций. Методы дефектоскопии. Ведомость дефектов Дефектоскопия металлов

Методы и технические средства дефектоскопии материала деталей машин и элементов и металлоконструкций. Методы дефектоскопии. Ведомость дефектов Дефектоскопия металлов
Методы и технические средства дефектоскопии материала деталей машин и элементов и металлоконструкций. Методы дефектоскопии. Ведомость дефектов Дефектоскопия металлов

Неразрушающие методы контроля позволяют проверять качество поковок и деталей (на отсутствие наружных и внутренних дефектов) без нарушения их целостности и могут быть использованы в сплошном контроле. К таким методам контроля относятся рентгено- и гамма-дефектоскопия, а также ультразвуковая, магнитная, капиллярная и другие виды дефектоскопии.

Рентгенодефектоскопия

Рентгенодефектоскопия основана на способности рентгеновского излучения проходить через толщу материала и поглощаться последним в различной степени в зависимости от его плотности. Излучение, источником которого является рентгеновская трубка, направляют через контролируемую поковку на чувствительную фотопластинку или светящийся экран. Если в поковке имеется дефектное место (например, трещина), излучение, проходящее через него, поглощается слабее, а фотопленка засвечивается сильнее. Регулируя интенсивность рентгеновского излучения, получают изображение в виде ровного светлого фона в бездефектных местах поковки и отличительного темного участка - в месте нахождения дефекта.

Выпускаемые промышленностью рентгеновские установки позволяют просвечивать стальные поковки толщиной до 120 мм, а поковки из легких сплавов - до 250 мм.

Гамма-дефектоскопия

Контроль поковок гамма-дефектоскопией аналогичен контролю рент- генодефектоскопией. На определенном расстоянии от исследуемого объекта устанавливают источник гамма-излучения, например капсулу с радиоактивным кобальтом-60, а с противоположной стороны объекта - устройство для регистрации интенсивности излучения. На индикаторе интенсивности (фотопленке) проявляются дефектные участки, имеющиеся внутри заготовки или поковки. Толщина контролируемых заготовок (поковок, деталей) достигает 300 .. .500 мм.

Во избежание облучения при использовании в качестве методов контроля рентгено- и гамма- дефектоскопии необходимо строго соблюдать требования безопасности и быть предельно осторожным.

Рис. 9.7. Установка для ультразукового контроля металла: 1 - осциллограф, 2, 3, 4 - световые импульсы, 5 - блок, 6 -головка, 7 - поковка, 8 - дефект

Ультразвуковая дефектоскопия

Ультразвуковая дефектоскопия является наиболее распространенным методом контроля, позволяющим проверять поковки толщиной до 1 м. Установка для ультразвукового контроля эхо-методом (рис. 9.7) состоит из искательной головки 6 и блока 5, в котором размещены генератор ультразвуковых электрических колебаний (частота свыше 20 кГц) и осциллограф 1. Головка 6 представляет собой пьезоэлектрический преобразователь электрических колебаний в механические.

С помощью искательной головки на исследуемый участок поковки 7 направляют импульс ультразвуковых колебаний, который отразится сначала от поверхности поковки, затем (с некоторым опозданием) - от дефекта 8 и еще позже - от донной поверхности объекта. Отраженный импульс (эхо) вызывает колебание пьезокристалла искательной головки, который преобразует механические колебания в электрические.

Электрический сигнал усиливается в приемнике и регистрируется на экране осциллографа 1: расстояние между импульсами 2,3 и 4 определяет глубину нахождения дефекта, а форма кривых - величину и характер последнего.

Магнитная дефектоскопия

Наиболее распространенным видом магнитной дефектоскопии является магнитно-порошковый метод, применяемый для контроля магнитных сплавов железа, никеля и кобальта. Стальную деталь намагничивают электромагнитом, а затем покрывают суспензией из керосина и магнитного порошка. В местах наличия дефекта частицы магнитного порошка скапливаются, копируя форму и размеры не только поверхностных трещин, но и дефектов, расположенных на глубине до 6мм.

Магнитно-порошковый метод позволяет выявить крупные и очень мелкие дефекты шириной 0,001 ...0,03 и глубиной до 0,01 ... 0,04 мм.

Капиллярная дефектоскопия основана на свойстве жидкостей под действием капиллярных сил заполнять полости поверхностных дефектов (трещин). Используемые для контроля жидкости либо обладают способностью люминесцировать под действием ультрафиолетового излучения (люминесцентная дефектоскопия), либо имеют окраску, четко выделяющуюся на общем фоне поверхности. Например, при люминесцентной дефектоскопии поковки погружают в раствор минерального масла в керосине, промывают, просушивают, а затем опыляют порошком оксида магния. Если осматривать невооруженным глазом такую поверхность при свете ртутной лампы, на фоне темно-фиолетовой поверхности поковки ясно видны ярко-белые трещины. Метод позволяет определять наличие трещин шириной от 1 до 400 мкм.

Контроль качества производства и строительства должен осуществляться на каждом этапе. Иногда проверить работу объекта нужно уже в процессе эксплуатации. Прибор, который помогает проводить подобного рода экспертизу неразрушающим методом, называется дефектоскоп. Видов дефектоскопов существует огромное множество. Отличаются они по принципу работы и назначению. Изучите самые популярные методы дефектоскопии и полезные рекомендации по выбору устройства, чтобы не ошибиться при выборе и быстро освоить работу.

В зависимости от цели дефектоскопии и области его применения, кардинально меняется методика выявления повреждений и брака, на которой основывается работа того или иного дефектоскопа.

Прибор вихретокового типа

Зачем нужна дефектоскопия

Дефектоскопия – мероприятия, которые направлены на выявление всевозможных отклонений от проекта и нормативов во время производства или эксплуатации объекта. Дефектоскопия помогает обнаружить неисправность задолго до того, как она даст о себе знать. Таким образом, можно предотвратить поломки механизмов, разрушение конструкций и аварии на производстве.

Дефектоскоп – прибор, предназначенный для проверки и выявления дефектов на поверхности или в теле всевозможных изделий. Дефекты могут быть самыми разнообразными. Одни приборы нужны для обнаружения следов коррозии, другие – для поиска полостей, утончения, несоответствия размеров и прочих физико-механических изъянов, а третьи могут определить дефекты на уровне молекулярного строения – найти изменения структуры тела, его химического состава.

Дефектоскоп с электронным дисплеем

В каких отраслях применяется дефектоскопия

Дефектоскоп относят к классу приборов под общим названием «средства неразрушающего контроля». В процессе производства изделия часто поддаются всевозможным проверкам. Некоторые детали подвергают испытаниям в лабораториях, где определяют их запас прочности, способность противостоять всевозможным нагрузкам и воздействиям. Недостаток такой методики в том, что она проводится выборочно и не гарантирует 100% качество всей продукции.

Диагностика трубопровода

Неразрушающий контроль, к которому относят и проверку дефектоскопом, позволяет оценить состояние конкретного изделия или элемента конструкции на месте и без проведения испытаний. Инструмент незаменим в таких отраслях:

  • строительство;
  • машиностроение;
  • производство металлопроката;
  • энергетика;
  • научно-исследовательские работы;
  • химия;
  • горная промышленность.

Неразрушающий контроль в авиастроении

Дефектоскопом проверяют качество соединения (особенно важно это для сварки трубопроводов высокого давления), состояние конструкции в строительстве (металлической, железобетонной), степень износа механизма, наличие повреждения детали. Практически во всех отраслях промышленности, где важно контролировать состояние и соответствие нормам твердых элементов, применяют разные дефектоскопы.

Классификация дефектоскопов по методу проверки

В зависимости от метода проверки, выделяют такие типы дефектоскопов:

  • акустические;
  • вихретоковые;
  • электролитические;
  • искровые;
  • магнитно-порошковые;
  • рентгеновские аппараты;
  • капиллярный;
  • импедансный и другие.

Панель управления УЗ дефектоскопа

Сравнивать их сложно, они настолько разные по строению, работе и даже внешнему виду, что объединяет их только назначение. Выделить какой-то из приборов и уверенно сказать, что он лучший, универсальный и заменит все остальные невозможно. Поэтому при выборе важно не принимать опрометчивых решений и не покупать первую попавшуюся модель.

Принцип действия каждого типа дефектоскопов

Самые популярные дефектоскопы, которыми можно проводить экспертизу неразрушающим методом: ультразвуковой (акустический), магнитный и вихретоковый. Они компактны, мобильны и просты в эксплуатации и понимании принципа. Другие используются не так широко, но каждый прочно занимает свою нишу среди других средств дефектоскопии.

Виды дефектоскопии

Акустический – работа ультразвука

Акустический дефектоскоп – понятие, объединяющее в себе схожие по общему принципу приборы неразрушающего контроля. Основывается акустическая дефектоскопия на свойствах звуковой волны. Из школьного курса физики известно, что основные параметры волны не изменяются при движении в однородной среде. Однако, если на пути волны возникает новая среда, частота и длина ее изменяются.

Чем выше частота звука, тем точнее результат, поэтому из всего диапазона применяют ультразвуковые волны. Ультразвуковой дефектоскоп излучает звуковые волны, которые проходят сквозь проверяемый объект. Если присутствуют полости, вкрапления других материалов или прочие дефекты, ультразвуковая волна обязательно укажет на них изменением параметров.

Все результаты должны заноситься в журнал

Ультразвуковые дефектоскопы, работающие по принципу эхо-метода, являются наиболее распространенными и доступными. УЗ-волна проникает в объект, если дефектов не обнаружено, отражения не происходит, соответственно, прибор ничего не улавливает и не регистрирует. Если же возникло отражение УЗ, это указывает на наличие изъяна. Генератор ультразвука является так же и приемником, что очень удобно и облегчает проведение дефектоскопии.

Мини-модель ультразвукового типа

Зеркальный метод похож на эхо, но используется два устройства – приемник и передатчик. Преимущество такого метода в том, что оба устройства находятся по одну сторону от объекта, что облегчает процесс установки, настройки и произведения замеров.

Отдельно выделяют методы анализа ультразвука, который прошел через объект насквозь. Используют понятие «звуковая тень». Если внутри объекта присутствует дефект, он способствует резкому затуханию колебаний, то есть, создает тень. На этом принципе основывается теневой метод ультразвуковой дефектоскопии, когда генератор и приемник колебаний располагаются на одной акустической оси с разных сторон.

Проверка ультразвуком

Недостатки такого прибора в том, что предъявляются строгие требования к размерам, конфигурации и даже степени шероховатости поверхности проверяемого элемента, что делает устройство не совсем универсальным.

Вихретоковый – магнитные поля и вихревые токи

Французский физик Жан Фуко посвятил не один год изучению вихревых токов (токов Фуко), которые возникают в проводниках при создании в непосредственной близости к ним переменного магнитного поля. Основываясь на том, что при наличии в теле дефекта, эти самые вихревые токи создают свое – вторичное магнитное поле, осуществляют дефектоскопию вихретоковые устройства.

Вихретоковый дефектоскоп создает исходное переменное магнитное поле, а вот вторичное поле, которое и дает возможность выявить и проанализировать недостаток в объекте, возникает в результате электромагнитной индукции. Дефектоскоп улавливает вторичное поле, регистрирует его параметры и делает вывод о виде и качестве дефекта.

Производительность этого прибора высокая, проверка осуществляется довольно быстро. Однако вихревые токи могут возникать исключительно в тех материалах, которые являются проводниками, поэтому область применения такого девайса значительно уже его аналогов.

Устройство вызывает в материале вихревые токи

Магнитнопорошковый – наглядная картина

Еще один распространенный метод дефектоскопии – магнитно-порошковый. Он применяется для оценки сварных соединений, качества защитного слоя, надежности трубопроводов и так далее. Особо ценят это метод для проверки сложных по форме элементов и труднодоступных для других приборов участков.

Принцип работы магнитного дефектоскопа основан на физических свойствах ферромагнитных материалов. Они имеют способность намагничиваться. При помощи постоянных магнитов или специальных устройств, которые могут создавать продольное или циркулярное магнитное поле.

После воздействия на участок объекта магнитом, на него сухим или мокрым способом наносят так называемый реагент – магнитный порошок. Под действием магнитного поля, которое возникло в результате намагничивания, порошок соединяется в цепочки, структурируется и образует на поверхности четкий рисунок в виде изогнутых линий.

Намагничивание специальным прибором

Этот рисунок наглядно демонстрирует работу магнитного поля. Зная его особенности и основные параметры, при помощи магнитного дефектоскопа можно определить, в каком месте располагается дефект. Как правило, непосредственно над изъяном (трещиной или полостью) наблюдается ярко выраженное скопление порошка. Для определения характеристик дефекта, полученную картинку сверяют с эталоном.

Магнитный порошок в спрее

Остальные виды и их принцип действия

Методы дефектоскопии совершенствуются с каждым годом. Появляются новые методики, другие постепенно изживают себя. Многие дефектоскопы имеют довольно узкоспециализированное назначение и применяются только в определенных отраслях промышленности.

Принцип работы феррозондового дефектоскопа основывается на оценке импульсов, возникающих при движении устройства вдоль объекта. Применяется в металлургии, при производстве металлопроката и диагностики сварных соединений.

Радиационный дефектоскоп облучает объект рентгеновскими лучами, альфа-, бета-, гамма-излучением или нейтронами. В результате получают подробный снимок элемента со всеми присутствующими дефектами и неоднородностями. Метод дорогой, но очень информативный.

Капиллярный дефектоскоп выявляет поверхностные трещины и несплошности в результате воздействия на объект специальным проявляющим веществом. Оценка результата производится визуальным методом. Применяется капиллярная дефектоскопия по большей части в машиностроении, авиации, судостроении.

В энергетике для анализа работы и выявления несовершенства элементов, находящихся под высоким напряжением, применяют электронно-оптический дефектоскоп. Он способен уловить малейшие изменения коронных и поверхностно-частичных разрядов, что дает возможность оценить работу оборудования без его остановки – дистанционно.

Снимки радиационной дефектоскопии

Как правильно выбрать дефектоскоп

Основные параметры, на которые следует обратить внимание при выборе дефектоскопа любого типа:

  • диапазон;
  • назначение;
  • производительность;
  • сложность монтажа;
  • диапазон температур;
  • надежность.

Магнитопорошковый прибор МД-М

Разные модели отличаются по диапазону измерения. Это значит, что одни способны выявить дефекты в 1 мкм, а предел для других – 10 мм, например. Если в машиностроении микротрещины в детали играют существенную роль, то для дефектоскопии в строительстве нет смысла покупать сверхточный прибор.

Также производитель обязательно указывает, для каких материалов предназначен конкретный дефектоскоп, недочеты какого характера он должен выявлять. Могут предъявляться требования к характеру поверхности элемента, наличию защитного слоя, размерам и форме объекта.

Под параметром «производительность» подразумевается скорость сканирования и объем работы, который можно выполнить за единицу времени при помощи определенного дефектоскопа. Так, вихретоковый и феррозондовый способы обеспечивают высокую скорость, в то время как процесс намагничивания и обработки каждого отдельного участка магнитным инструментом может занять довольно продолжительное время.

Важная деталь – установка. Выбирая модель дефектоскопа имеет смысл задуматься, как долго и насколько сложно его устанавливать. Ручные мобильные приспособления, которые можно достать из сумки в любой момент, предпочтительней для дежурной дефектоскопии в процессе производства или монтажа. Более сложное и точное оборудование требует длительной установки и наладки.

Ультразвуковой прибор требует наладки перед началом работы

Поскольку неразрушающий контроль может производиться как в помещении, так и на улице, в том числе в зимнее время, заранее уточните, можно ли работать выбранным устройством при отрицательных температурах. Также обязательно выяснить, допустимо ли выполнять диагностику в условиях агрессивной среды, если это необходимо.

Зная, как работает дефектоскоп того или иного типа, вы легко сможете определиться с главным – способом дефектоскопии. А определиться с моделью поможет опытный консультант.

Дефектоскопия представляет собой современный способ диагностики, который позволяет выявить дефекты сварки и внутренних структур материалов без их разрушения. Этот способ диагностики используется при проверке качества швов сварки и для определения прочности металлических элементов. Поговорим поподробнее о различных методах дефектоскопии.

Для чего необходимо проводить такую диагностику

При выполнении сварочных работ не всегда удается обеспечить качественное соединение, что приводит к ухудшению прочности выполненных металлических элементов. Чтобы определить наличие таких дефектов используют специальное оборудование, способное выявлять отклонения структуры или же состав исследуемого материала. Дефектоскопия исследует физические свойства материалов, воздействуя на них инфракрасным и рентгеновским излучением, радиоволнами и ультразвуковыми колебаниями. Проводиться такое исследование может как визуально, так и с помощью специальных оптических приборов. Современное оборудование позволяет определять малейшее отклонения в физической структуре материала и выявлять даже микроскопические дефекты, которые способны повлиять на прочность соединения.

Дефектоскопия методы контроля

  • Фотографический — это распространенный способ определения дефектов состояния, когда выполняют съемку на пленку или цифровые носители, с последующим увеличением и определением наличия возможных дефектов. Следует сказать, что такой способ диагностики был распространён ранее, однако сегодня он постепенно вытесняется современными технологиями дефектоскопии.
  • Инфракрасная технология позволяет обнаружить дефекты сварки, которые невидимы при визуальном осмотре. Данная технология подразумевает использование специального инфракрасного излучения, что в свою очередь обеспечивает качественное определение микротрещин, вздутий и нарушений однородности.
  • Магнитный способ диагностики позволяет обнаруживать трещины путем выявления искажения магнитного поля. Подобная технология в последние годы получила широкое распространение, что объясняется ее эффективностью и простотой в использовании.
  • Ультразвуковая дефектоскопия позволяет определить наличие внутренних дефектов сварки, поэтому данные технологии широко используются в металлургическом производстве, машиностроение и строительстве.
  • Имперансный способ диагностики измеряет механическое сопротивление изделий, на основании чего производится выявление внутренних дефектов, отклонений химического состава, наличие пористости и нарушение однородности.

Эффективный метод ультразвуковой дефектоскопии

Следует сказать, что различные способы дефектоскопии имеют свои преимущества и недостатки. Важно правильно подобрать оптимальную технологию для каждого конкретного сварного соединения, что и позволит обеспечить максимальную точность определения имеющихся дефектов металлических сплавов и сварочных швов.

В последние годы наибольшее распространение получила ультразвуковая технология дефектоскопии, которая отличается универсальностью в использовании и позволяет точно определять имеющиеся неоднородности структуры. Отметим компактность оборудования для ультразвуковой дефектоскопии, простоту выполняемых работ и производительность такой диагностики. В настоящее время существуют специальные установки для ультразвуковой дефектоскопии, которые позволяют обнаруживать дефекты площадью в один квадратный миллиметр.

При помощи такого многофункционального современного оборудования можно определить не только имеющиеся повреждения и дефекты, но и контролировать толщину материала вплоть до нескольких миллиметров толщины. Это позволяет существенно расширить сферу использования такого оборудования для дефектоскопии, функционал которого в последние годы существенно расширился.

Использование такого исследования в производственном процессе и последующее наблюдение за эксплуатирующимися металлическими сварными изделиями позволяет обеспечить сокращение временных и денежных затрат на контроль качества изготовленных материалов и максимально точно определять состояние различных металлических деталей во время их эксплуатации.

Окончание сварных работ – это начало контроля качества сварных соединений. Ведь понятно, что от качества проведенных работ зависит долгосрочная эксплуатация сборной конструкции. Дефектоскопия сварных швов – это методы контроля сварных соединений. Их несколько, поэтому стоит разобраться в теме досконально.

Существует видимые дефекты сварочного шва и невидимые (скрытые). Первые легко можно увидеть глазами, некоторые из них не очень большие, но при помощи лупы обнаружить их не проблема. Вторая группа более обширная, и располагаются такие дефекты внутри тела сварного шва.

Обнаружить скрытые дефекты можно двумя способами. Способ первый – неразрушающий. Второй – разрушающий. Первый вариант, по понятным причинам, используется чаще всего.

Неразрушающий способ контроля качества сварных швов В этой категории несколько способов, использующихся для проверки качества сварных швов.

  • Визуальный осмотр (внешний).
  • Магнитный контроль.
  • Дефектоскопия радиационная.
  • Ультразвуковая.
  • Капиллярная.
  • Контроль сварных соединений на проницаемость.

Есть и другие способы, но используются они нечасто.

Визуальный осмотр

С помощью внешнего осмотра можно выявить не только видимые дефекты швов, но и невидимые. К примеру, неравномерность шва по высоте и ширине говорит о том, что в процессе сварки были прерывания дуги. А это гарантия, что шов внутри имеет непровары.

Как правильно проводится осмотр.

  • Шов очищается от окалин, шлака и капель металла.
  • Затем его обрабатывают техническим спиртом.
  • После еще одна обработка десятипроцентным раствором азотной кислоты. Она называется травление.
  • Поверхность шва получается чистой и матовой. На ней хорошо видны самые мелкие трещинки и поры.

Внимание! Азотная кислота – материал, разъедающий металл. Поэтому после осмотра металлический сварной шов надо обработать спиртом.

О лупе уже упоминалось. С помощью этого инструмента можно обнаружить мизерные изъяны в виде тонких трещин толщиною меньше волоса, пережоги, мелкие подрезы и прочие. К тому же при помощи лупы можно проконтролировать – растет ли трещина или нет.

При осмотре можно также пользоваться штангенциркулем, шаблонами, линейкой. Ими замеряют высоту и ширину шва, его ровное продольное месторасположение.

Магнитный контроль сварных швов

Магнитные методы дефектоскопии основаны на создании магнитного поля, которое пронизывает тело сварного шва. Для этого используется специальный аппарат, в принцип работы которого вложено явления электромагнетизма.

Есть два способа, как определить дефект внутри соединения.

  1. С использованием ферромагнитного порошка, обычно это железо. Его можно использовать как в сухом виде, так и во влажном. Во втором случае железный порошок смешивают с маслом или керосином. Его посыпают на шов, а с другой стороны устанавливают магнит. В местах, где есть дефекты, порошок будет собираться.
  2. С помощью ферромагнитной ленты. Ее укладывают на шов, а с другой стороны устанавливают прибор. Все дефекты, которые оказываются в стыке двух металлических заготовок, будут отображаться на этой пленке.

Этот вариант дефектоскопии сварных соединений можно использовать для контроля только ферромагнитных стыков. Цветные металлы, стали с хромникелевым покрытием и другие таким способом не контролируются.

Радиационный контроль

Это, по сути, рентгеноскопия. Здесь используются дорогие приборы, да и гамма-излучение вредно для человека. Хотя это самый верный вариант обнаружения дефектов в сварочном шве. Они четко видны на пленке.

Ультразвуковая дефектоскопия

Это еще один точный вариант обнаружения изъянов в сварочном шве. В его основе лежит свойство ультразвуковых волн отражаться от поверхности материалов или сред с разными плотностями. Если сварной шов не имеет внутри себя дефектов, то есть, его плотность однородна, то звуковые волны пройдут сквозь него без помех. Если внутри дефекты есть, а это полости, наполненные газом, то внутри получаются две разные среды: металл и газ.

Поэтому ультразвук будет отражаться от металлической плоскости поры или трещины, и вернется обратно, отображаясь на датчике. Необходимо отметить, что разные изъяны отражают волны по-разному. Поэтому можно итог дефектоскопии классифицировать.

Это самый удобный и быстрый способ контроля сварных соединений трубопроводов, сосудов и других конструкций. Единственный у него минус – сложность расшифровки полученных сигналов, поэтому с такими приборами работают только высококвалифицированные специалисты.

Капиллярный контроль

Методы контроля сварных швов капиллярным способом основаны на свойствах некоторых жидкостей проникать в тело материалов по самым мельчайшим трещинкам и порам, структурным каналам (капиллярам). Самое главное, что этим способом можно контролировать любые материалы, разной плотности, размеров и формы. Неважно, это металл (черный или цветной), пластик, стекло, керамика и так далее.

Проникающие жидкости просачиваются в любые изъяны поверхности, а некоторые из них, к примеру, керосин, могут проходить сквозь достаточно толстые изделия насквозь. И самое главное, чем меньше размер дефекта и выше впитываемость жидкости, тем быстрее протекает процесс обнаружения изъяна, тем глубже жидкость проникает.

Сегодня специалисты пользуются несколькими видами проникающих жидкостей.

Пенетранты

С английского это слово переводится, как впитывающий. В настоящее время существует более десятка составов пенетрантов (водные или на основе органических жидкостей: керосин, масла и так далее). Все они обладают малым поверхностным натяжением и сильной цветовой контрастностью, что позволяет их легко увидеть. То есть, суть метода такова: наносится пенетрант на поверхность сварочного шва, он проникает внутрь, если есть дефект, окрашивается с этой же стороны после очистки нанесенного слоя.

Сегодня производители предлагают разные проникающие жидкости с разным эффектом обнаружения изъяном.

  • Люминесцентные. Из названия понятно, что в их состав входят люминесцентные добавки. После нанесения такой жидкости на шов нужно посветить на стык ультрафиолетовой лампой. Если дефект есть, то люминесцентные вещества будут отсвечивать, и это будет видно.
  • Цветные. В состав жидкостей входят специальные светящиеся красители. Чаще всего это красители ярко-красные. Они хорошо видны даже при дневном свете. Наносите такую жидкость на шов, и если с другой стороны появились красные пятнышки, то дефект обнаружен.

Есть разделение пенетрантов по чувствительности. Первый класс – это жидкости, с помощью которых можно определить дефекты с поперечным размером от 0,1 до 1,0 микрона. Второй класс – до 0,5 микрон. При этом учитывается, что глубина изъяна должна превосходить его ширину в десять раз.

Наносить пенетранты можно любым способом, сегодня предлагаются баллончики с этой жидкостью. В комплект к ним прилагаются очистители для зачистки дефектуемой поверхности и проявитель, с помощью которого выявляется проникновение пенетранта и показывается рисунок.

Как это надо делать правильно.

  • Шов и околошовные участки необходимо хорошо очистить. Нельзя использовать механические методы, они могут стать причиной занесения грязи в сами трещины и поры. Используют теплую воду или мыльный раствор, последний этап – очистка очистителем.
  • Иногда появляется необходимость протравить поверхность шва. Главное после этого кислоту убрать.
  • Вся поверхность высушивается.
  • Если контроль качества сварных соединений металлоконструкций или трубопроводов проводится при минусовой температуре, то сам шов перед нанесением пенетрантов надо обработать этиловым спиртом.
  • Наносится впитывающая жидкость, которую через 5-20 минут надо удалить.
  • После чего наносится проявитель (индикатор), который из дефектов сварного шва вытягивает пенетрант. Если дефект небольшой, то придется вооружиться лупой. Если никаких изменений на поверхности шва нет, то и дефектов нет.

Керосин

Этот способ можно обозначить, как самый простой и дешевый, но от этого эффективность его не снижается. Его проводят по этой технологии.

  • Очищают стык двух металлических заготовок от грязи и ржавчины с двух сторон шва.
  • С одной стороны на шов наносится меловой раствор (400 г на 1 л воды). Необходимо дождаться, чтобы нанесенный слой просох.
  • С обратной стороны наносится керосин. Смачивать надо обильно в несколько подходов в течение 15 минут.
  • Теперь нужно наблюдать за стороной, где был нанесен меловой раствор. Если появились темные рисунки (пятна, линии), то значит, в сварочном шве присутствует дефект. Эти рисунки со временем будут только расширяться. Здесь важно точно определить места выхода керосина, поэтому после первого нанесения его на шов, нужно сразу проводить наблюдение. Кстати, точки и мелкие пятнышки будут говорить о наличие свищей, линии – о наличии трещин. Очень эффективен этот метод при стыковочных вариантах соединение, к примеру, труба к трубе. При сварке металлов, уложенных внахлест, он менее эффективен.

Методы контроля качества сварных соединений на проницаемость

В основном этот способ контроля используется для емкостей и резервуаров, которые изготовлены методом сварки. Для этого можно использовать газы или жидкости, которыми заполняется сосуд. После чего внутри создается избыточное давление, выталкивающее материалы наружу.

И если в местах сварки емкостей есть дефекты, то жидкость или газ тут же начнут через них проходить. В зависимости от того, какой контрольный компонент используется в проверочном процессе, различаются четыре варианта: гидравлический, пневматический, пневмогидравлический и вакуумный. В первом случае используется жидкость, во втором газ (даже воздух), третий – комбинированный. И четвертый – это создание внутри емкости вакуума, который через дефектные швы будет втягивать внутрь резервуара окрашивающие вещества, наносимые на внешнюю сторону шва.

При пневматическом способе внутрь сосуда закачивается газ, давление которого превышает номинальный в 1,5 раза. С внешней стороны на шов наносится мыльный раствор. Пузырьки покажут наличие дефектов. При гидравлической дефектоскопии в сосуд заливается жидкость под давлением в 1,5 раза превышающее рабочее, производится обстукивание околошовного участка. Появление жидкости говорит о наличии изъяна.

Вот такие варианты дефектоскопии трубопроводов, резервуаров и металлоконструкций сегодня используют для определения качества сварного шва. Некоторые из них достаточно сложные и дорогие. Но основные просты, поэтому и часто используемые.

Дефектоскопия (от лат. defectus - недостаток, изъян и греч. skopeo - смотрю) - совокупность методов и средств неразрушающего контроля материалов и изделий для обнаружения в них различных дефектов. К последним относятся нарушения сплошности или однородности структуры, зоны коррозионного поражения, отклонения химического состава и размеров и др.

Важнейшие методы дефектоскопии - магнитной, электрической, вихретоковый, радиоволновой, тепловой, оптической, радиационной, аккустической, проникающих веществ. Наилучшие результаты достигаются при комплексном использовании разных методов.

Магнитной, ультразвуковой, а также рентгеновской дефектоскопией пользуются в тех случаях, когда при внешнем осмотре детали возникает подозрение о наличии скрытого порока и когда проверка предусмотрена правилами ремнта, в частности при дефектации аппаратов, подлежащих проверке по правилам Госгортехнадзора.

Магнитная дефектоскопия основана на регистрации в местах дефектов искажений магнитного поля. Для индикации используют: магнитный порошок или масляную суспензию Fe 3 O 4 , частицы которых оседают в местах расположения дефектов (магнитно-порошковый метод); магнитную ленту (связанную с устройством для магнитной записи), накладываемую на исследуемый участок и намагничиваемую в различной степени в дефектных и бездефектных зонах, что вызывает изменения импульсов тока, регистрируемые на экране осциллографа (магнитографичный метод); малогабаритные приборы, которые при передвижении по изделию в месте дефекта указывают на искажение магнитного поля (например, феррозондовый метрд). Магнитная дефектоскопия позволяет выявлять макродефекты (трещины, раковины, непровары, расслоения) с минимальными размерами > 0,1 мм на глубине до 10 мм в изделиях из ферри- и ферромагнитных материалов (в т. ч. в металлонаполненных пластиках, металлопластах и др.).

При электрической дефектоскопии фиксируют параметры электрического поля, взаимодействующего с объектом контроля. Наиболее распространен метод, позволяющий обнаруживать дефекты диэлектриков (алмаза, кварца, слюд, полистирола и др.) по изменению электрической емкости при введении в него объекта. С помощью термоэлектрического метода измеряют ЭДС, возникающую в замкнутом контуре при нагревании мест контакта двух разнородных материалов. Метод применяют для определения толщины защитных покрытий, оценки качества биметаллических материалов, сортировки изделий.



При электростатичном методе в поле помещают изделия из диэлектриков (фарфора, стекла, пластмасс) или металлов, покрытых диэлектриками. Изделия с помощью пульверизатора опыляют высокодисперсным порошком мела, частицы которого вследствие трения об эбонитовый наконечник пульверизатора имеют положительный заряд и из-за разницы в диэлектрической проницаемости неповрежденного и дефектного участков скапливаются у краев поверхностных трещин.

Электропотенциальный метод используют для определения глубины (>> 5 мм) трещин в электропроводных материалах по искажению электрического поля при обтекании дефекта током.

Электроискровой метод , основанный на возникновении разряда в местах нарушения сплошности, позволяет контролировать качество неэлектропроводных (лакокрасочных, эмалевых и др.) покрытий с максимальной толщиной 10 мм на металлических деталях. Напряжение между электродами щупа, устанавливаемого на покрытие, и поверхностью металла составляет порядка 40 кВ.

Вихретоковая дефектоскопия основана на изменении в местах дефектов поля вихревых токов, которые наводятся в электропроводных объектах электромагнитным полем (диапазон частот от 5 Гц до 10 МГц) индукционных катушек, питаемых переменным током. Используют для обнаружения поверхностных (трещин, раковин, волосовин глубиной > 0,1 мм) и подповерхностных (глубина 8-10 мм) дефектов, определения хим. состава и структурных неоднородностей материалов, измерения толщины покрытий и др.

При радиоволновой дефектоскопии происходит взаимодействие (преимущественно отражение) с объектом контроля радиоволн длиной 1-100мм, которые фиксируются специальными приборами - радиодефектоскопами. Метод позволяет выявлять дефекты с минимальными размерами от 0,01 до 0,5 длины волны, контролировать химический состав и структуру изделий, главным образом из неметаллических материалов. Особенно широкое распространение метод получил для бесконтактного контроля проводящих сред.



Тепловая дефектоскопия позволяет обнаруживать поверхностные и внутренние дефекты в изделиях из теплопроводных материалов анализом их температурных полей, возникающих под действием теплового излучения (длины волн от 0,1 мм до 0,76 мкм).

Наибольшее применение имеет так называемая пассивная дефектоскопия (внешний источник нагревания отсутствует), например, тепловизионный метод, основанный на сканировании поверхности объекта узким оптическим лучом, а также метод термокрасок, цвет которых зависит от температуры поверхности изделия. При активной дефектоскопии изделия нагревают плазмотроном, лампой накаливания, оптическим квантовым генератором и измеряют изменение прошедшего через объект или отраженного от него теплового излучения.

Оптическая дефектоскопия основана на взаимодействии исследуемых изделий со световым излучением (длины волн 0,4-0,76 мкм). Контроль может быть визуальным или с помощью светочувствительных приборов; минимальный размер выявляемых дефектов в первом случае составляет 0,1-0,2 мм, во втором - десятки мкм. С целью увеличения изображения дефекта используют проекторы и микроскопы. Шероховатость поверхности проверяют интерферометрами, в т.ч. голографическими, сравнивая волны когерентных пучков света, отраженных от контролируемой и эталонной поверхностей.

Для обнаружения поверхностных дефектов (размер > 0,1 мм) в труднодоступных местах применяют эндоскопы, позволяющие посредством специальные оптические системы и волоконной оптики передавать изображения на расстояния до нескольких метров.

Радиационная дефектоскопия предусматривает радиоактивное облучение объектов рентгеновскими, a-, b- и g-лучами, а также нейтронами. Источники излучений - рентгеновские аппараты, радиоактивные изотопы, линейные ускорители, бетатроны, микротроны. Радиационное изображение дефекта преобразуют в радиографичный снимок (радиография), электрический сигнал (радиометрия) или световое изображение на выходном экране радиационно-оптического преобразователя или прибора (радиационная интроскопия, радиоскопия). Развивается радиационная вычислительная томография, которая позволяет с помощью ЭВМ и сканирующих поверхностьсть объекта сфокусированных рентгеновских лучей получать его послойное изображение. Метод обеспечивает выявление дефектов с чувствительностью 1,0-1,5% (отношение протяженности дефекта в направлении просвечивания к толщине стенки детали) в литых изделиях и сварных соединениях.

Аккустическая дефектоскопия основана на изменениях под влиянием дефектов упругих колебаний (диапазон частот от 50 Гц до 50 МГц), возбужденных в металлических изделиях и диэлектриках. Различают ультразвуковые (эхо-метод, теневой и др.) и собственно акустические (импедансный, акустико-эмиссионный) методы. Наиболее распространены ультразвуковые методы. Среди них самый универсальный - эхо-метод анализа параметров акустических импульсов, отраженных от поверхностных и глубинных дефектов (площадь отражающей поверхности / 1 мм 2). При так называемом теневом методе о наличии дефекта судят по уменьшению амплитуды или изменению фазы ультразвуковых колебаний, огибающих дефект. Резонансный метод основан на определении собственных резонансных частот упругих колебаний при их возбуждении в изделии; применяют для обнаружения коррозионных повреждений или утонений стенок изделий с погрешностью около 1%. По изменению скорости распространения (велосимметричный метод) упругих волн в местах нарушения сплошности контролируют качество многослойных металлических конструкций. В основе импедансного метода лежит измерение механического сопротивления (импеданса) изделий преобразователем, сканирующим поверхность и возбуждающим в изделии упругие колебания звуковой частоты; этим методом выявляют дефекты (площадью / 15 мм 2) клеевых, паяных и других соединений, между тонкой обшивкой и элементами жесткости или заполнителями в многослойных конструкциях. Анализом спектра колебаний, возбужденных в изделии ударом, обнаруживают зоны нарушения соединений между элементами в многослойных клееных конструкциях значительной толщины (метод свободных колебаний).

Акустико-эмиссионный метод, основанный на контроле характеристик упругих волн, которые возникают в результате локальной перестройки структуры материала при образовании и развитии дефектов, позволяет определять их координаты, параметры и скорость роста, а также пластическую деформацию материала; используют для диагностики сосудов высокого давления, корпусов атомных реакторов, трубопроводов и т.д.

По сравнению с другими методами акустическая дефектоскопия наиболее универсальна и безопасна в эксплуатации.

Дефектоскопию проникающими веществами подразделяют на капиллярную и течеисканием.

Капиллярная дефектоскопия (заполнение под действием капиллярных сил полостей дефектов хорошо смачивающими жидкостями) основана на искусственном повышении свето- и цветоконтрастности дефектного участка относительно неповрежденного. Метод применяют для выявления поверхностных дефектов глубиной > 10 мкм и шириной раскрытия > 1 мкм на деталях из металлов, пластмасс, керамики. Эффект обнаружения дефектов усиливается при использовании веществ, люминесцирующих в УФ лучах (люминесцентный метод), или смесей люминофоров с красителями (цветной метод). Дефектоскопия течеисканием основана на проникании газов или жидкостей через сквозные дефекты и позволяет контролировать герметичность сосудов высокого или низкого давления, многослойных изделий, сварных швов и т. д.

С помощью газовых испытаний утечки либо подсосы выявляют, определяя снижение давления (манометричный метод), создаваемого в изделиях потоком воздуха, азота, гелия, галогена или другого газа, относительное содержание его в окружающей среде (масс-спектрометричный, галогенный методы), изменение теплопроводности (катарометричный метод) и т. д.; на базе этих методов разработаны наиболее высокочувствительные течеискатели. При жидкостных испытаниях изделия заполняют жидкостью (водой, керосином, расвором люминофора) и определяют степень их герметичности по появлению капель и пятен жидкости или светящихся точек на поверхности. Газожидкостные методы основаны на создании внутри изделия повышения давления газа и погружении его в жидкость или обмазывании мест течи мыльной водой; герметичность контролируют по выделению пузырьков газа или мыльной пены. Минимальный размер выявляемого при течеискании дефекта составляет около 1 нм.

Метод люминесцентной дефектоскопии требует применения люминесцентного дефектоскопа или переносных ртутнокварцевых приборов типа ЛЮМ-1, ЛЮМ-2 и т.д. Метод основан на введении в полость дефектов люминесцентного вещества с последующим облучением поверхности детали ультрафиолетовыми лучами. Под их воздействием дефекты становятся видимыми вследствие люминесценции вещества. Метод позволяет выявлть поверхностные дефекты шириной не менее 0,02 мм в деталях любой геометрической формы.

Последовательность операций при люминесцентной дефектоскопии:

Очистка поверхности от загрязнений;

Нанесение проникающего люминесцентного состава;

Нанесение проявляющего порошка;

Осмотр детали в ультрафиолетовых лучах.

Можно применять люминесцентный: керосин - 55-75%, вазелиновое масло – 15-20%; бензол или бензин – 10-20%; эмульгатор – ОП-7 – 2-3 г/л; дефектоль зелено-золотистый – 0,2 г/л. Проявляющие порошки – углекислый магний, тальк или силикагель.

Ведомость дефектов.

После проведения подетальной дефектации составляется дефектная ведомость. В дефектной ведомости отмечается характер повреждения или износа деталей, объем необходимого ремонта с указанием вновь изготавливаемых деталей; указываются также все работы, связанные с капитальным ремонтом (разборка, транспортировка, промывка и т.д.), и работы, которыми заканчивается ремонт (подготовка, шабровка, сборка, проверка на прочность, опробование, сдача в эксплуатацию).

Карты на дефектацию и ремонт являются одним из основных технических документов дляя ремонта. В них излагаются указания по дефектации деталей. Карты располагаются в порядке возрастания нумерации сборочных единиц и деталей или по конструктивной последовательности расположения сборочных единиц.

В левом верхнем углу карты помещается эскиз детали или тенологиеского процесса. На эскизе проставляются габаритные размеры, отдельно показываются профили зубьев шестерен, шлицев, шлицевых и шпоночных пазов, кулаков и т.п. Номера позиций и места контроля выносятся от размерной стрелки и располагаются в возрастающем порядке по часовой стрелке или слева направо.

В правом верхнем углу карты приводятся данные с чертежами, характеризующие деталь.

Принят следующий порядок постороения карты:

Проставляются номера позиций дефектов, указанных на эскизе. Не указанные на эскизе дефекты детали наносятся в первую очередь без проставления позиций;

Заносятся возможные дефекты детали, образующиеся в процессе эксплуатации машины по технологической последовательности их контроля. Сначала отменяются дефекты, определяемые визуально, а затем дефекты, определяемые замерами;

Указываются способы и средства контроля дефектов;

Проставляются номинальне размеры с указанием допусков в соответствии с чертежами завода-изготовителя;

Проставляются допустимые размеры с точностью до 0,01 мм при сопряжении этой детали с новой;

Проставляются допустимые размеры, но в сопряжении с деталью, бывшей в эксплуатации;

Порядок проведения ремонта.

1. Настоящий порядок устанавливает и разъясняет особенности проведения негарантийного и гарантийного ремонта оборудования. Здесь и далее в тексте Мастер – лицо, выполняющее ремонт и несущее связанные с этим расходы, а Заказчик – лицо, сдающее оборудование в ремонт и оплачивающее этот ремонт.

2. Доставка оборудования на территорию Мастера, а также возврат оборудования из ремонта по взаимному соглашению Мастера и Заказчика может быть произведена либо Мастером, либо Заказчиком, либо иным лицом, уполномоченным Заказчиком. В случае доставки оборудования Мастером эта доставка подлежит оплате как транспортный расход (выезд Мастера) согласно действующего на момент выезда прейскуранта. Оплате подлежит как выезд для доставки оборудования в ремонт, так и выезд для возврата оборудования из ремонта.

3. Заказчик при передаче оборудования в ремонт соглашается с тем, что оборудование принимается без разборки и поиска неисправностей. Заказчик соглашается с тем, что все неисправности, обнаруженные Мастером при техническом осмотре оборудования, произошли до момента передачи оборудования Мастеру. Заказчик соглашается с тем, что Мастер может обнаружить другие неисправности, не указанные Заказчиком при передаче оборудования в ремонт.

4. Заказчик принимает на себя риск частичной утраты потребительских свойств ремонтируемого оборудования, которая может произойти после ремонта. Мастер в ходе ремонта старается не допустить потерь потребительских свойств и по возможности минимизирует риск таких потерь.

5. Работы по ремонту оборудования проводятся только после согласования с Заказчиком ориентировочной стоимости ремонта. В случае отказа Заказчика от ремонта оплате подлежит стоимость работ по диагностике неисправности.

6. Ремонт может быть четырёх категорий сложности:

7. В ходе проведения ремонта у Мастера может возникнуть необходимость в проведении косвенных операций. Это операции, непосредственно не связанные с выполнением ремонтных работ, но без выполнения которых проведение ремонта было бы невозможным или крайне затруднительным.

Это такие операции, как:

Поиск в интернете схем, мануалов, сервисных инструкций, даташитов на компоненты, изделия и блоки;

Получение конфиденциальной информации, необходимой для проведения ремонта, от изготовителей микроэлектронных изделий и компонентов;

Составление принципиальных схем, ведение электронных библиотек и баз данных;

Изготовление или приобретение специальных приспособлений, инструментов и установок для ремонта;

Разработка сервисных программ и утилит или поиск их в интернете;

Заказ отсутствующих компонентов в интернете и ожидание их поступления или покупка их в магазинах.

Косвенные операции никоим образом не касаются взаимоотношений Мастера и Заказчика и Заказчиком не оплачиваются. Это – сугубо внутреннее дело Мастера, которое оплачивается Мастером. В отношении к Заказчику косвенные операции приводят лишь к дополнительным задержкам при выполнении ремонта.

8. Стоимость блоков, деталей и узлов, заменённых в ремонтируемом оборудовании, оплачивается Заказчиком и входит в калькуляцию ремонта. Стоимость расходных материалов (спецфлюсы и другие химические вещества, провода и т.п.) входит в стоимость работ по ремонту и отдельно не оплачивается.

9. Заменённые в ходе ремонта неисправные детали, узлы и блоки выдаются Заказчику по его просьбе. За хранение этих деталей, узлов и блоков Мастер несёт ответственность в течение одних суток после выдачи Заказчику отремонтированного оборудования. По истечении суток неисправные детали, узлы и блоки утилизируются.