Габаритные размеры эпр должны быть минимальными. Эффективная площадь рассеяния. Диаграмма обратного рассеяния

Габаритные размеры эпр должны быть минимальными. Эффективная площадь рассеяния. Диаграмма обратного рассеяния

Эффективная площадь рассеяния цели (ЭПР)

Расчет дальности радиолокационного наблюдения требует количественной характеристики интенсивности отраженной волны. Мощность отраженного сигнала на входе приемника станции зависит от целого ряда факторов и прежде всего от отражающих свойств цели. Обычно радиолокационные цели характеризуются эффективной площадью рассеяния. Под эффективной площадью рассеяния цели в случае, когда антенна РЛС излучает и принимает электромагнитные волны одной и той же поляризации, понимается величина у ц, удовлетворяющая равенству у ц П 1 =4рК 2 П 2 , где П 1 -плотность потока мощности прямой волны данной поляризации в точке расположения цели; П 2 -- плотность потока мощности отраженной от цели волны данной поляризации у антенны РЛС; R -- расстояние от РЛС до цели. Значение ЭПР непосредственно может быть вычислено по формуле

у ц П 1 =4рR 2 П 2 / П 1

Как следует из формулы приведенной выше, у ц имеет размерность площади. Поэтому ее условно можно рассматривать как некоторую эквивалентную цели нормальную радиолучу площадку площадью у ц, которая, изотропно рассеивая всю падающую на нее от РЛС мощность волны, создает в точке приема ту же плотность потока мощности П 2 , что и реальная цель.

Если задана ЭПР цели, то при известных величинах П 1 и R можно вычислить плотность потока мощности отраженной волны П, а затем, определив мощность принимаемого сигнала, оценить дальность действия радиолокационной станции.

Эффективная площадь рассеяния у ц не зависит ни от интенсивности излучаемой волны, ни от расстояния между станцией и целью. Действительно, всякое увеличение П 1 ведет к пропорциональному увеличению П 2 и их отношение в формуле не изменяется. При изменении расстояния между РЛС и целью отношение П 2 /П 1 меняется обратно пропорционально R 2 и величина у ц при этом остается неизменной.

Сложные и групповые цели

Рассмотрение простейших отражателей не вызывает затруднения. Большинство реальных радиолокационных целей представляет собой сложную комбинацию отражателей различного типа. В процессе радиолокационного наблюдения таких целей имеют дело с сигналом, который является результатом интерференции нескольких сигналов, отраженных от отдельных элементов цели.

При облучении сложного объекта (например, самолет, корабль, танк и т. д.) характер отражений от его отдельных элементов сильно зависит от их ориентации. В некоторых положениях определенные части самолета или корабля могут давать весьма интенсивные сигналы, а в других положениях интенсивность отраженных сигналов может падать до нуля. Кроме того, при изменении положения объекта относительно РЛС меняются фазовые соотношения между сигналами, отраженными от различных элементов. В результате этого возникают флюктуации результирующего сигнала.

Возможны и другие причины изменений интенсивности отраженных сигналов. Так, может наблюдаться изменение проводимости между отдельными элементами самолета, одной из причин которого являются вибрации, обусловленные работой двигателя. При изменении проводимости меняются распределения токов, наведенных на поверхности самолета, и интенсивность отраженных сигналов. У винтовых и турбовинтовых самолетов дополнительным источником изменения интенсивности отражений является вращение винт.

Рис 2.1.

В процессе радиолокационного наблюдения взаимное положение самолета (корабля) и РЛС непрерывно меняется. Результатом этого являются флюктуации отраженных сигналов и соответствующие им изменения ЭПР. Законы распределения вероятностей эффективной площади рассеяния цели и характер изменений этой величины во времени обычно определяются экспериментально. Для этого записывают интенсивность отраженных сигналов и после обработки записи находят статистические характеристики сигналов и ЭПР.

Как показали многие исследования, для флюктуации у ц самолетов с достаточной точностью справедлив экспоненциальный закон распределения

W (у ц) = (1/<у ц >) ехр (-- у ц /<у ц >).

где <у ц > - среднее значение ЭПР.

Диаграммы обратного излучения кораблей имеют более тонкую лепестковую структуру, чем диаграммы самолетов, что объясняется значительно большими размерами и сложной конструкций кораблей. Отражающие элементы корабля многочисленны и разнообразны, поэтому корабль также можно рассматривать как группу элементов, отражения от которых имеют случайные фазы.

Экспериментальные исследования показывают, что флюктуации ЭПР корабля приближенно описываются также экспоненциальным законом распределения.

Данные о законах распределения амплитуд сигналов или ЭПР необходимы для расчета дальности действия РЛС и обоснования методики обработки сигналов. Сведения о функции корреляции и спектра флюктуации кроме того важны при определении точности измерения координат.

При практической оценке дальности действия радиолокационной станции прежде всего обычно пользуются средним значением ЭПР <у ц > Эту величину можно получить усреднением значений <у ц > для различных направлений падения облучающей волны. В таблице приведены средние значения ЭПР различных реальных целей, полученные в итоге обобщения большого числа измерений на волнах сантиметрового диапазона. Пользуясь этими величинами, можно произвести вычисления средних значений дальности обнаружения различных целей.

Простейшей объемно распределенной целью являются дипольные отражатели, которые в большом количестве сбрасываются с самолета или выстреливаются специальными снарядами, рассеиваются в воздухе и образуют облако отражателей. Они применяются для постановки пассивных помех в широком диапазоне частот и одновременно против многих РТС.

Дипольные отражатели представляют собой пассивные полуволновые вибраторы с геометрической длиной, близкой к половине длины волны облучающей РЛС (l ≈ 0,47λ). Их изготавливают из металлизированной бумаги, алюминиевой фольги, металлизированного стекловолокна и других материалов.

ЭПР облака из n дипольных отражателей определяется произведением ЭПР отдельных отражателей, находящихся в облаке:

σ = n σ do ,

где: σ do – ЭПР одного дипольного отражателя.

При линейной поляризации падающей электромагнитной волны максимальное значение ЭПР единичного дипольного отражателя наблюдается при совпадении его геометрической оси с вектором Е напряженности электрического поля волны. Тогда:

σ do max = 0,86λ 2

Если дипольный отражатель ориентирован перпендикулярно к вектору Е облучающей электромагнитной волны, то σ do = 0 .

Вследствие турбулентности атмосферы и различия аэродинамических свойств дипольных отражателей они ориентируются в облаке произвольно. Поэтому при расчетах используют среднее значение ЭПР единичного дипольного отражателя.

σ do sr = 1/5 · σ do max = 0,17λ 2 ,

где: λ – длина волны облучающей РЛС.

Отсюда следует, что одновременное подавление РТС, работающих на различных частотах, возможно только при использовании дипольных отражателей различной длины.

Простейшей точечной целью являются уголковые отражатели. При относительно небольших геометрических размерах они обладают значительной величиной ЭПР в широком диапазоне длин волн, что позволяет эффективно имитировать различные точечные цели.

Уголковый отражатель состоит из жестко связанных между собой взаимно перпендикулярных плоскостей. Простейший уголковый отражатель представляет собой двугранный или трехгранный угол (рис.3.3,а,б).

Рис.3.3. Принцип действия уголкового отражателя:

а – двугранного;б – трехгранного.

Трехгранный уголковый отражатель обладает свойством зеркального отражения в сторону РЛС при облучении в пределах угла 45 0 , что обеспечивает сохранение большой ЭПР в пределах этого угла. Для расширения диаграммы рассеяния применяют уголковые отражатели, состоящие из четырех или восьми уголков. ДР трехгранного отражателя показана на рис.3.4.

Рис.3.4. Диаграмма рассеяния трехгранного отражателя.


На практике используются трехгранные уголковые отражатели, имеющие треугольную, прямоугольную или секторную форму (рис.3.5,а,б,в).

Рис.3.5. Уголковые отражатели: а – с треугольными гранями (θ 0,5 ≈ 60 0);

б – с секторными гранями; в – с квадратными гранями (θ 0,5 ≈ 35 0).

Для объектов простой геометрической формы можно получить аналитические выражения для определения их ЭПР. Так как плотность потока мощности прямо пропорциональна квадрату напряженности электрического поля, то формулу ЭПР цели можно представить в виде

σ = 4πD 2 · Е 2 2 /Е 2 1

Отношение Е 2 /Е 1 , входящее в это выражение, можно найти на основании принципа Гюйгенса. Этот метод состоит в том, что каждая точка на поверхности облучаемого объекта рассматривается как источник вторичной сферической волны. Тогда, суммируя действие вторичных сферических волн в месте расположения РЛС, можно найти напряженность результирующего электрического поля вторичного излучения. Расчетные формулы для определения ЭПР некоторых простых целей приведены в табл.3.1.

Таблица 3.1. ЭПР некоторых простых целей.

Простейшими считают объекты, ЭПР которых может быть достаточно просто вычислена аналитически. К ним относятся плоский лист, цилиндр, шар, уголковый и биконический отражатели, полуволновый вибратор, участок диффузно-рассеивающей поверхности, а также некоторые групповые и распределенные цели. Определение ЭПР таких объектов может представлять самостоятельный интерес, а также быть необходимо для вычисления ЭПР объектов сложной конфигурации, которые могут быть представлены совокупностью простейших объектов.

Для нахождения ЭПР участка S хорошо проводящей выпуклой поверхности (рис. 8.2) воспользуемся формулой (8.4), в которой отношение можно получить суммированием элементарных полей, создаваемых в месте расположения РЛС отраженными сигналами от элементов поверхности . Если расстояние от антенны РЛС до рассматриваемого элемента равно D и облучение происходит под углом к нормали с напряженностью поля то напряженность поля , в месте расположения РЛС

где - расстояние от РЛС до ближайшей точки поверхности. Тогда

поскольку .

Подставив значение в формулу (8.4), найдем выражение для ЭПР поверхности:

Воспользуемся полученным выражением для вычисления эффективной площади рассеяния некоторых простейших объектов.

ЭПР плоской хорошо проводящей пластины. Если металлический лист, размеры которого а и b много больше , но много меньше D, расположен перпендикулярно направлению облучения (рис. 8.3), то выражение (8.6) принимает вид

поскольку и вследствие малости размеров листа по сравнению с дальностью D и его расположению перпендикулярно направлению прихода радиоволн.

Таким образом, при нормальном облучении идеально проводящий лист зеркально отражает всю падающую энергию в направлении РЛС, что и обеспечивает большую ЭПР по сравнению с площадью листа. При см лист площадью имеет при облучении по нормали , что в несколько раз превышает ЭПР большого самолета.

Однако даже при небольшом отклонении направления облучения от нормали ЭПР плоского листа резко падает. Предположим, что направление облучения отклонено от нормали в горизонтальной плоскости на угол . Рассматривая лист как плоскую синфазную антенну с диаграммой направленности, описываемой функцией выражение для ЭПР можно записать в виде

Зависимость ЭПР от угла облучения называют диаграммой рассеяния цели.

Плоский лист имеет диаграмму рассеяния, описываемую функцией вида .

При больших отношениях размера листа к длине волны (в рассмотренном случае ) диаграмма рассеяния будет очень острой, т. е. при увеличении а значение ЭПР листа резко меняется в соответствии с функцией , снижаясь в некоторых направлениях до нуля.

Для ряда применений желательно сохранение большого значения ЭПР в широком диапазоне изменения углов облучения. Это необходимо, например, при использовании отражателей в качестве пассивных радиомаяков. Таким свойством обладает уголковый отражатель.

ЭПР уголкового отражателя. Уголковый отражатель состоит из трех взаимно перпендикулярных металлических листов, он обладает свойством отражения радиоволн в сторону облучающей РЛС, что объясняется трехкратным отражением от стенок отражателя (рис. 8.4), которое испытывает волна, если направление облучения находится вблизи оси симметрии (в пределах телесного угла ) уголкового отражателя. Из рис. 8.4 можно видеть, что трехкратное отражение происходит, если падающий луч проходит в пределах шестиугольника, вписанного во внешний контур отражателя. Следовательно, ЭПР уголкового отражателя примерно равна ЭПР плоского листа в виде такого шестиугольника, облучаемого по нормали. Подставив выражение для площади шестиугольника в (8.7), получим формулу для расчета ЭПР уголкового отражателя:

(8.9)

При и см ЭПР уголкового отражателя . Таким образом, ЭПР уголкового отражателя несколько меньше ЭПР плоской пластины с размерами . Однако уголковый отражатель сохраняет большое значение ЭПР в достаточно широком секторе, тогда как ЭПР пластины резко уменьшается при незначительных отклонениях направления облучения от нормали. Необходимо подчеркнуть, что достижение теоретического значения возможно лишь при высокой точности его изготовления, особенно при работе на волнах короче 3 см. Для расширения действующего сектора применяют уголковые отражатели, состоящие из четырех уголков.

В качестве пассивных радиолокационных маяков на море используют также биконические отражатели (рис. 8.5), составленные из двух одинаковых металлических конусов.

Рис. 8.4 Рис. 8.5

Если угол между образующими конусов равен , то луч после двукратного отражения от поверхности конусов направляется в сторону PЛC, что и обеспечивает большое значение ЭПР. Достоинством биконического отражателя является равномерная диаграмма рассеяния в плоскости, перпендикулярной его оси.

ЭПР шара. Для определения ЭПР большого (по сравнению с ) шара с идеально проводящей гладкой поверхностью можно воспользоваться формулой (8.6). Однако в данном случае в этом нет необходимости, поскольку такой шар соответствует требованиям к гипотетической цели, площадь поперечного сечения которой и является ее ЭПР. Таким образом, ЭПР шара, имеющего и гладкую идеально проводящую поверхность, равна его площади поперечного сечения независимо от длины волны и направления облучения:

Благодаря этому свойству большой шар с хорошо проводящей поверхностью применяют в качестве эталона при экспериментальном измерении ЭПР реальных объектов путем сравнения интенсивности отраженных сигналов.

При уменьшении отношения радиуса шара к длине волны до значений у функции (рис. 8.6) появляется ряд резонансных максимумов и минимумов, т. е. шар начинает вести себя как вибратор. При диаметре шара, близком к , ЭПР шара в четыре раза превышает площадь его поперечного сечения. Для малого шара с ЭПР определяется дифракционной формулой Рэлея и характеризуется сильной зависимостью от длины волны облучающих радиоволн.

Этот случай имеет место, например, при отражении радиоволн от капелек дождя и тумана.

С учетом значения диэлектрической проницаемости воды () ЭПР дождевых капель

где - диаметр капель.

Чтобы избежать обнаружения радарами противника, современные истребители, корабли и ракеты должны иметь наименьшую эффективную площадь рассеяния (ЭПР). Учёные и инженеры, разрабатывающие такие малозаметные объекты, с помощью методик вычислительной электродинамики оптимизируют ЭПР и эффекты рассеяния произвольных объектов при использовании радаров. Рассматриваемый объект рассеивает падающие на него электромагнитные волны во всех направлениях, и часть энергии, возвращаемая к источнику электромагнитных волн в процессе т.н. обратного рассеяния, формирует своеобразное "эхо" объекта. ЭПР как раз является мерой интенсивности радиолокационного эхо-сигнала.


На практике применяют эталонную проводящую сферу в качестве объекта для калибровки радаров. Аналогичная постановка проблемы используется для верификации численного расчета ЭПР, поскольку решение данной классической задачи электродинамики было получено Густавом Ми еще в 1908 году .


В данной заметке мы расскажем о проведении такого эталонного расчета с помощью эффективной двумерной осесимметричной постановки, а также кратко отметим общие принципы решения широкого класса задач рассеяния в COMSOL Multiphysics ® .



Рис.1. Распределение электрического поля (его нормы) и усредненного по времени потока энергии (стрелки) вокруг идеально проводящей сферы в свободном пространстве.

Рассеяние на проводящей сфере: размер имеет значение

В трехмерной постановке даже с учетом использования идеально согласованных слоев (Perfectly Matched Layers - PML), позволяющих эффективно ограничить расчетную область и имитировать открытые границы, и условий симметрии, расчет с подробным разрешением по частоте/длине волны может занять достаточно много времени.



К счастью, если объект является осесимметричным и рассеивает волны изотропно, проведение полного 3d-анализа не требуется. Чтобы проанализировать распространение электромагнитных волн и резонансное поведение объекта, достаточно провести расчет для его поперечного сечения в двумерной осесимметричной постановке при задании определенных условий.

Двухмерная осесимметричная модель СВЧ-процесса: взгляд изнутри

Предположим, что наша сфера металлическая и имеет высокую проводимость. Для данной задачи поверхность сферы задается как идеальный электрический проводник (Perfect electric conductor - PEC), а её внутренняя часть исключается из расчетной области. Область вокруг нее определяется как вакуум с соответствующими материальными свойствами, а в самом внешнем слое используется PML сферического типа, используемый для поглощения всех исходящих волн и предотвращения отражения от границ расчетной области.


Моделирование металлических объектов в волновых электромагнитных задачах

Для численного решения задач электродинамики в частотной области существует несколько приемов для эффективного моделирования металлических объектов. На иллюстрации ниже отражены техники и рекомендации по использованию Переходного граничного условия (Transition boundary condition - TBC), Импедансного граничного условия (Impedance boundary condition - IBC) и условия типа Идеальный Электрический Проводник (Perfect Electric Conductor - PEC).







Рис. 3. Геометрия для осесимметричной постановки и задание фонового электромагнитного поля с левой круговой поляризацией в графическом интерфейсе COMSOL Multiphysics ® .


В расчётной области (кроме PML) задается возбуждение фонового поля с левой круговой поляризацией, направленного в отрицательном направлении оси z (Рис. 3). Обратите внимание, что выставлен расчет только для первой азимутальной моды.


По умолчанию для СВЧ-задач в COMSOL Multiphysics ® автоматически строится свободная треугольная (или тетраэдральная для 3D-задач) сетка под указанную для исследования в частотной области (Frequency Domain study) максимальную частоту, которая в рассматриваемом примере составляет 200 МГц. Чтобы обеспечить достаточное разрешение волновых процессов в модели, устанавливается максимальный размер элемента сетки, равный 0.2 длины волны. Другими словами пространственное разрешение задается как пять элементов второго порядка на длину волны. В идеально согласованных слоях сетка строится протяжкой в направлении поглощения, что обеспечивает максимальную эффективность работы PML.


Т.к. число степеней свободы в модели очень мало (по сравнению с трехмерной постановкой), то ее расчет занимает всего несколько секунд. На выходе пользователь может получить и визуализировать распределение электрического поля вокруг сферы (в ближней зоне), которое представляет собой сумму фонового и рассеянного полей.


Для данной задачи наиболее интересные характеристики относятся к области дальнего поля. Чтобы их получить в модели нужно активировать на внешней границе расчетной области (в данном случае на внутренней границе PML) условие Far-Field Calculation, что позволяет рассчитывать поля в дальней зоне за пределами расчетной области в любой точке на основе интегральных соотношений Страттона-Чу. Активация добавляет дополнительную переменную - амплитуду поля в дальней зоне, на основе которой в постобработке ПО рассчитывает инженерные переменные, соответствующие стандартам IEEE: эффективную изотропно излучаемую мощность, коэффициент усиления (т.н. Gain, в т.ч. учетом входного рассогласования), коэффициент направленного действия и ЭПР.


По полярному графику специалист может определить направленность поля в дальней зоне в определенной плоскости, а трехмерная диаграмма направленности в дальней зоне позволяет более подробно изучить поле рассеяния (рис. 4).




Рис. 4. Трехмерная визуализация поля в дальней зоне на основе двухмерной осесимметричной модели в COMSOL Multiphysics ® .

Восстановление решения для трехмерной задачи

Результаты для "сокращенной" модели в осесимметричной постановке относятся к процессу облучения проводящей сферы фоновым полем с круговой поляризацией. В исходной же 3d-задаче характеристики поля рассеяния исследуются для случая линейно-поляризованной плоской волны. Как обойти данное различие?


По определению линейную поляризацию можно получить, сложив правую и левую круговую поляризацию. Двухмерная осесимметричная модель с указанными выше настройками (Рис. 2) соответствует первой азимутальной моде (m = 1) фонового поля с левой круговой поляризацией. Решение для отрицательной азимутальной моды с правой круговой поляризацией легко вывести из уже решенной задачи, воспользовавшись свойствами симметрии и проведя простые алгебраические преобразования.


Проведя всего один двухмерный анализ и зеркально отобразив результаты уже в процессе постобработки, можно извлечь все необходимые данные, значительно сэкономив при этом вычислительные ресурсы (Рис.5).




Рис. 5. Сравнение развертки эффективной площади рассеяния (в логарифмическом масштабе) по углам рассеяния для полного трехмерного расчета и предложенной двухмерной осесимметричной модели.


Одномерный график (Рис. 5) со сравнением ЭПР демонстрирует приемлемое соответствие между трехмерной и двухмерной осесимметричной моделями. Небольшое расхождение наблюдается лишь в области прямого и обратного рассеяния, вблизи оси вращения.


В дополнение для наглядной визуализации полученных двухмерных результатов в трехмерном пространстве потребуется преобразование системы координат из цилиндрической в декартову . На рис. 6 приведена трехмерная визуализация результатов для двухмерной осесимметричной модели.




Рис. 6. Трехмерное представление полученных результатов на основе двумерного расчета.


Вращающиеся по спирали стрелки обозначают фоновое поле с круговой поляризацией. График в горизонтальном сечении представляет собой распределение радиальной составляющей фонового поля (волновой процесс отображен с помощью деформаций плоскости). На поверхности сферы построена норма полного электрического поля. Еще одна стрелочная диаграмма показывает суперпозицию двух круговых поляризаций, что эквивалентно фоновому полю с линейной поляризацией в трехмерном пространстве.

Заключение

В процессе современной разработки в области радиофизики и микроволновой техники для инженеров эффективные приемы моделирования, сокращающие ресурсоемкость и затраты времени, незаменимы вне зависимости от применяемого метода численного анализа.


Для сохранения целостности и воссоздании всех релевантных физических эффектов при моделировании реального компонента, обладающего большим электрическим размером, возможно упростить процесс численного расчета без потери точности путем решения задачи в двухмерной осесимметричной постановке. При моделировании и анализе таких осесимметричных объектов, как рассеивающие сферы и диски, конические рупорные и параболические антенны , вычисления для сечения устройства выполняются на несколько порядков быстрее, чем при использовании полной трехмерной модели.


Основы моделирования антенн в COMSOL Multiphysics

Рассеяние волн – одно из наиболее фундаментальных явлений физики, т.к. именно в форме рассеянных электромагнитных или акустических волн мы получаем огромную долю информации об окружающем мире. Полноволновые формулировки, доступные в модулях Радиочастоты и Волновая Оптика, а также в модуле Акустика, позволяют детально моделировать эти явления с помощью метода конечных элементов. В данном вебинаре мы обсудим сложившиеся практики решения задач рассеяния в COMSOL, включая использование формулировок рассеянного поля (Background Field), функционала по анализу полей в дальней зоне (Far-Field Calculation), проведения широполосных расчетов с помощью новых технологий на основе разрывного метода Галеркина (dG-FEM), а также моделирования антенн и датчиков в режиме приема сигнала.


В завершение вебинара мы обсудим доступные шаблоны и примеры в Библиотеке моделей и приложений от COMSOL, а также ответим на вопросы пользователе по данной теме.


Также можно запросить демонстрационную версию COMSOL в комментариях или на нашем сайте .


Финальная гифка: